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Abstract: The mathematical model of riffle shuffle has been a subject of some
studies. Whereas most of these regard the cards as all different, in 2006 Conger
and Viswanath treated some of them as identical and investigated the implications.
When the initial deck is arranged in alternating reds and blacks, they showed that
two outcomes are equally likely if a number of particular transformations can
turn one of them into the other. This transformation, which may be viewed as a
reversible string rewriting system, partitions the set of outcomes into equivalence
classes. They conjectured that the number of such classes is precisely (n+3)2n−2 ,
where n is the number of cards of each color. In this paper, the assertion is proven
true by the method of invariant and derivation of canonical forms.
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1 Introduction
Riffle shuffle, one of the most common methods of card shuffling and its math-
ematical model, usually called Gilbert-Shannon-Reeds or GSR model, has been
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a subject of some studies (see, e.g. [1],[3]). In 2006, Conger and Viswanath [2]
investigated a new aspect of this shuffle whereby some of the cards are regarded as
the same. One particular case is when there are only two types of cards, red and
black, and the initial deck is arranged in an alternating manner (i.e. red, black,
red, black, and so on). When the initial deck consists of n reds and n blacks, each
outcome can be viewed as a binary string of n zeros and n ones and we denote
the set of all these strings by Sn . It was shown that any two members of Sn are
the equally likely outcomes of riffle shuffle if they are equivalent in the following
sense.

First, we define a transformation R which can be applied at any local con-
tiguous stretch (i.e. substring) τ of σ ∈ Sn that contains equal numbers of two
digits. The transformation proceeds by reversing the substring, then inverting ev-
ery zero and one of this substring into one and zero respectively. We say σ

R−→ σ′

if σ becomes σ
′ when some substring of σ is applied by a transformation R. For

example, when R is applied at the middle six digits of 00111001 , namely the sub-
string 011100 , it becomes 01000111 after the first step and the resulting string is
01100011 ; hence, we may write 00111001

R−→ 01100011 . The equivalence relation
defined as the transitive, reflexive closure of R−→ ( R−→ is obviously symmetric) will
be denoted by ↔ .

As a result, Sn can be partitioned into equivalence classes of equally likely
outcomes by ↔ . Conger and Viswanath [2] observed that the number of these
classes appears to be given by a simple formula (n+ 3)2n−2 but offered no proof.
Our goal here is to prove this hypothesis, restated as follows:

Theorem 1.1. The number of equivalence classes defined by ↔ is (n+ 3)2n−2 .

Note that this relation can also be realized under the notion of a reversible
string rewriting system.

2 Proof of Theorem 1.1
The proof is divided into 3 parts. First we give an invariant called F (σ) for
each σ ∈ Sn that is preserved through each transformation R . The second part
provides an algorithm of how to apply R so that each σ arrives at one of the
canonical forms. These forms are shown to have pairwise distinct F (σ) and thus
cannot be turned into one another by R ; moreover, the result also implies that
two strings with the same F (σ) are equivalent. The final step enumerates the
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numbers of these forms by elementary methods.

2.1 The Invariant F (σ)

We give an invariant preserved by transformation R that perfectly characterizes
each equivalence class i.e. one that is different for each class. For any σ ∈ Sn ,
fσ(i) denotes the number of 0 ’s preceding σ(i) , the ith digit of σ , subtracted by
the number of 1 ’s preceding σ(i) , and define F (σ) to be a multiset:

F (σ) = {fσ(i)|σ(i) = 0}.

For example, in the case n = 4 , F (00111001) = {0, 1,−1, 0} . We will show
that if σ

R−→ σ′ then F (σ) = F (σ′) . Suppose that R is applied from ith to jth

digit of σ . Since this segment of σ contains the same number of 0 ’s and 1 ’s, for
any k /∈ [i, j] , we have fσ(k) = fσ′(k) . It is therefore sufficient to consider only
the substring τ representing the segment [i, j] that is turned into τ ′ by R .

We will pair each 0 at position i0 to some 1 at position i1 such that fτ (i0) =

fτ (i1)− 1 . Consider the following algorithm applied to a binary string containing
the same number of 0 ’s and 1 ’s: From left to right, whenever we encounter two
adjacent unequal digits, delete both of them until we reach the end of the string.
Then we proceed again and again until there is no digit left. When the starting
string is 0011110010 , the steps are as follows:

0011110010 =⇒ 01110010 =⇒ 011010 =⇒ 0110 =⇒ 10 =⇒ −.

This can always be done towards the end since every step leaves equal numbers
of 0 ’s and 1 ’s, and there are always 2 adjacent unequal digits if the length is
nonzero. Notice that it follows directly from definition that any two digits deleted
together satisfy our condition, namely if 0 at position i0 in the starting string
is deleted with 1 at position i1 , we have fτ (i0) = fτ (i1) − 1 . This pairing is a
bijection between digits 0 ’s and 1 ’s. Hence, if G(τ) := {fτ (i)|τ(i) = 1} , we have

G(τ) = {λ+ 1|λ ∈ F (τ)}.

Denote the length of string τ by N0 . If the numbers of 0 ’s and 1 ’s before
the digit 1 at position i1 of τ are A and B , respectively, then the numbers of
0 ’s and 1 ’s after digit i1 are N0

2 −A and N0

2 −B − 1 . Therefore, in τ0 , a string
resulted from reversing τ , the numbers of 0 ’s and 1 ’s before digit N0 +1− i1 are
N0

2 −A and N0

2 −B − 1 , that is,

fτ0(N0 + 1− i1) = (N0

2 −A)− (N0

2 −B − 1) = −(A−B) + 1 = −fτ (i1) + 1.
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Define G(τ0) := {fτ0(i)| τ0(i) = 1} . We then have

G(τ0) = {−λ+ 1| λ ∈ G(τ)} = {−λ|λ ∈ F (τ)}.

Then, after all zeroes and ones of τ0 are switched to ones and zeroes, it becomes
τ ′ which has the property fτ ′(k) = −fτ0(k) . It follows that F (τ ′) = {−λ|λ ∈
G(τ0)} = {λ|λ ∈ F (τ)} = F (τ) . We conclude F (σ) is invariant with respect to
transformation R .

2.2 The Algorithm

From now on, let a , b represent substrings 01 and 10 , respectively. Each
σ ∈ Sn can be abbreviated by turning two unequal contiguous digits into a and b

sequentially until there are no two contiguous 01 and 10 left in this representative
string. We call this new string of 4 letters a , b , 0 , 1 a reduced form of σ . For
example, both 0ab1 and 0a1a are reduced forms of 001101 .

001101 =⇒ 0a101 =⇒ 0ab1 or 0a1a

Note that 0b and a0 abbreviate the same string, and similarly for 1a and b1 .
When R is applied to a reduced form, we can easily see that R really performs

as normal; we only need to treat a and b as new letters to be included in the
reversal step. This is because a becomes b after the first step but then switches
back to a again after reversal, and analogously for b .

If we remove all a ’s and b ’s of a reduced form π , the resulting string will be
binary. We call the number of adjacent pairs of unequal digits (01 and 10) in this
string, the number of transitions of π . It will be shown next that every member of
Sn has an equivalent reduced form with at most 2 transitions. Let π be a reduced
form of σ and suppose that π has more than 2 transitions.

When all a ’s and b ’s in π are removed, the resulting string must have a
substring which provides 3 transitions i.e. it looks like one of the following:

01 . . . 10 . . . 01 or 10 . . . 01 . . . 10.

We only consider the first case as it proceeds analogously in the second. This
means π has a substring in the following form:

0__1 . . . 10 . . . 0__1,
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where both intervals can only be filled by a ’s or b ’s. The substring between
these intervals, π0 , can also contain a ’s and b ’s, but they are irrelevant to our
consideration here.

Let A1 and A0 be the numbers of ones and zeros in π0 . If A1 ≤ A0 , there will
be a substring of π0 beginning at the leftmost 1 that contains the equal numbers
of ones and zeros. We can now apply R to the stretch comprising this substring
and the interval filled by a , b before it.

0 __1 . . . 10 . . . 0 . . . 0__1
R−−−→ 0 1 . . . 10 . . . 0__ . . . 0__1.

The result is that all a ’s and b ’s in the interval is flung into π0 , creating a new pair
of adjacent unequal digits 01 , which is abbreviated into a . This gives a reduced
form equivalent to π but with length decreased by 1 .

Similarly, in the case A1 ≥ A0 there will be a substring of π0 ending at the
rightmost zero that contains ones and zeros equally. R can then be applied to
the stretch comprising this substring and the interval filled by a ’s and b ’s after it,
creating adjacent pair 01 , which is abbreviated into a . This also gives a reduced
form equivalent to π with length decreased by 1 .

The above procedure can always be performed as long as the reduced form’s
number of transitions stays above 2 . Since the length of a reduced form is finite,
the process must terminate, at which point the number of transitions must have
dropped to at most 2, as desired.

Let us consider possible transformations to a reduced form π∗ with at most 2

transitions. First, we note that R permits a substring consisting entirely of a ’s
and b ’s to be permuted in any way since any adjacent a and b can be swapped.
Three possible numbers of transitions are considered separately.
Case 1 : π∗ has zero transition.

Thus, it consists entirely of a ’s and b ’s. We permute π∗ so that all a ’s come
before the first b .
Case 2 : π∗ has one transition.

In this case, when all of a ’s and b ’s of π∗ are removed, it becomes k′ 0 ’s
followed by k′ 1 ’s, or vice versa, where 1 ≤ k′ ≤ n− 1 . We consider only the first
case, i.e. when π∗ is of the following form:

_
k′ 0’s︷ ︸︸ ︷

0_0_0 . . ._0_
k′ 1’s︷ ︸︸ ︷

1_1_1 . . ._1_,

where the intervals are to be filled by a ’s and b ’s.
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By applying a single R in the location shown below, all a ’s and b ’s in each of
the first k′ intervals can be sent toward the last k′ + 1 intervals adjacent to 1 ’s
by a single R :

. . . _0_0_0 . . ._0_1_1_1 . . ._1 _ . . .

We perform such R at most k′ times until all the first k′ intervals become empty.
Then, except for those in the last interval, every b is associated with a digit 1
immediately to the right of its interval. We can make each of these b ’s come
into contact with its associated 1 , in succession, in order to apply rewriting rule
b1 ⇒ 1a , and thereby making all b ’s outside the last interval disappeared. If π∗

has not become a reduced form with zero transition (every 01 we encounter will
be turned to a), it will be of the form

00 . . . 0_1_1_1 . . ._1_ ,

where the first k′ intervals are filled by a ’s and the last is filled by a ’s and b ’s;
moreover at least one a must be between the last 0 and the first 1 to accom-
modate the transition. The other case may be treated analogously, so that the
resulting string is of the form

11 . . . 1_0_0_0 . . ._0_ ,

where the last k′ intervals are filled by a ’s and the first interval is filled by a ’s
and b ’s; moreover at least one b must be in the first interval.
Case 3 : π∗ has two transitions.

If π∗ is not of the following form, we may simply apply R to the whole string
so that it becomes

_
k′ 0’s︷ ︸︸ ︷

0_0_0 . . ._0_
k′+l′ 1’s︷ ︸︸ ︷

1_1_1 . . ._1_
l′ 0’s︷ ︸︸ ︷

0_0_0 . . ._0_.

By applying a single R in the location shown below, all a or b in each of the
first k′ intervals and the last l′ intervals can be sent toward k′ + l′ + 1 intervals
next to 1 ’s.

. . . _0_0_0 . . ._0_1_1_1 . . ._1 _ . . . or . . . 1_1_1_ . . . 1_0_0_0_ . . . 0_ . . .

We perform such R at most k+ l times until all those intervals become empty i.e.
the result is of the form

0 . . . 0_1_1_1 . . ._1_0 . . . 0.
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Similar to Case 2, the string can be further transformed into a reduced form that b

only exists in the last interval. Furthermore, in the case that no b exists in the last
interval, one can replace a0 by 0b until a new pair of adjacent digits 10 appears,
which can then be abbreviated as b , reducing the string’s length. We only consider
the final result when this can no longer be done. Hence, if the reduced form still
has 2 transitions, at least one a must be in the first interval to accommodate the
transition, and at least one b must be in the last interval.

What we have done amounts to showing that every σ ∈ Sn has an equivalent
reduced form in one of the following three types. It will be straightforward to
calculate F (σ) for each form.
Type I : Reduced forms with zero transition

k≥0︷ ︸︸ ︷
aa . . . a

n−k︷ ︸︸ ︷
bb . . . b

Let T1 be the set of reduced forms in Type I. If σ ∈ T1 , F (σ) is

{0, . . . , 0︸ ︷︷ ︸
k

,−1, . . . ,−1︸ ︷︷ ︸
n−k

}.

Type II: Reduced forms with one transition

k≥1︷ ︸︸ ︷
00 . . . 0 a

only a︷︸︸︷
__ 1

only a︷︸︸︷
__ 1 . . .

only a︷︸︸︷
__ 1

a or b︷︸︸︷
__

or
k≥1︷ ︸︸ ︷

11 . . . 1 b

a or b︷︸︸︷
__ 0

only a︷︸︸︷
__ 0 . . .

only a︷︸︸︷
__ 0

only a︷︸︸︷
__

Let T2 be the set of reduced forms in Type II. If σ ∈ T2 , for 1 ≤ i ≤ k + 1 ,
denote the number of a ’s in the ith interval by ui and the number of b ’s by uk+2 .
By simple calculation, we find that in the first case, F (σ) is

{k, . . . , k︸ ︷︷ ︸
u1

, k − 1, . . . , k − 1︸ ︷︷ ︸
u2+1

, . . . , 1, . . . , 1︸ ︷︷ ︸
uk+1

, 0, . . . , 0︸ ︷︷ ︸
uk+1+1

,−1, . . . ,−1︸ ︷︷ ︸
uk+2

}.

and in the second case, F (σ) is

{−k − 1, . . . ,−k − 1︸ ︷︷ ︸
uk+2

,−k, . . . ,−k︸ ︷︷ ︸
u1+1

,−k + 1, . . . ,−k + 1︸ ︷︷ ︸
u2+1

, . . . ,−1, . . . ,−1︸ ︷︷ ︸
uk+1

, 0, . . . , 0︸ ︷︷ ︸
uk+1

}.
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Type III : Reduced forms with two transitions

k≥1︷ ︸︸ ︷
00 . . . 0 a

only a︷︸︸︷
__ 1

only a︷︸︸︷
__ 1 . . .

only a︷︸︸︷
__ 1b

a or b︷︸︸︷
__

l≥1︷ ︸︸ ︷
00 . . . 0

Let T3 be the set of reduced forms in Type III. If σ ∈ T3 , for 1 ≤ i ≤ k+ l+1 ,
denote the number of a ’s in the ith interval by vi and denote the number of b ’s
by vk+l+2 . By simple calculation, F (σ) can be shown to be

{k, . . . , k︸ ︷︷ ︸
v1

, k − 1, . . . , k − 1︸ ︷︷ ︸
v2+1

, k − 2, . . . , k − 2︸ ︷︷ ︸
v3+1

, . . . ,−l, . . . ,−l︸ ︷︷ ︸
vk+l+1+1

,−l − 1, . . . ,−l − 1︸ ︷︷ ︸
vk+l+2

}.

These are the canonical forms that each σ ∈ Sn can be turned into. Hence, any
two strings with the same F (σ) can be turned toward one another. Furthermore,
notice that all the possible F (σ) are pairwise distinct, implying that two distinct
forms are not equivalent. The number of equivalence classes is indeed the number
of the forms in these types.

2.3 Enumeration

The number of forms in each type is counted by elementary techniques. For
Type I, since the number of a ’s can range from 0 to n , |T1| = n+ 1 . In Type II,
for each k , there are n − k − 1 a ’s and b ’s left to be filled. We have ui ≥ 0 for

each 1 ≤ i ≤ k + 2 and
k+2∑
i=1

ui = n − k − 1 . There are
(

n

k + 1

)
solutions under

this condition; hence,

|T2| = 2

n−1∑
k=1

(
n

k + 1

)
= 2(2n − n− 1).

Lastly, for Type III, and for each k, l , we have vi ≥ 0 for each 1 ≤ i ≤ k + 2

and
k+l+2∑
i=1

vi = n− (k+ l+ 2) . The number of solutions is therefore
(

n− 1

k + l + 1

)
.

Thus,

|T3| =
∑
k,l≥1

(
n− 1

k + l + 1

)
=

n−2∑
c=2

(c− 1)

(
n− 1

c+ 1

)
= 2n−2(n− 1)− 2n + n+ 1.

Since |T1|+ |T2|+ |T3| = (n+ 3)2n−2 , Theorem 1.1 is hereby proven.
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3 Conclusion
We show that the number of equivalent classes determining equally likely outcomes
after riffle shuffles on an alternating is (n+3)2n−2 , where n is the number of cards
of each type. In doing so, we have essentially solved the word problem for this
specific reversible string rewriting system by: (i) finding an invariant preserved
by the rules of transformation, and (ii) providing canonical forms with pairwise
distinct invariants.
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