A Non-regular Continued Fraction and Its Characterization Property

Vichian Laohakosol and Panupong Vichitkunakorn*

Abstract

A construction of non-regular continued fractions is introduced. Some basic properties and its characterization property are derived.

Keywords: non-regular continued fraction
2000 Mathematics Subject Classification: 11A55, 11F70

1 Introduction

In the field of formal series $\mathbb{F}\left(\left(x^{-1}\right)\right)$ equipped with the degree valuation, an expression of the form:

$$
\begin{equation*}
b_{0}+\frac{a_{1}}{b_{1}+} \frac{a_{2}}{b_{2}+} \frac{a_{3}}{b_{3}+} \ldots:=\left[b_{0} ; a_{1}, b_{1} ; a_{2}, b_{2} ; a_{3}, b_{3} ; \ldots\right], \tag{1}
\end{equation*}
$$

where $a_{i}, b_{i} \in \mathbb{F}[x]$, is called a (non-regular) continued fraction. The elements a_{i}, b_{i} are called partial numerators, and partial denominators, respectively. When all $a_{i}=1$, and all $b_{i} \in \mathbb{F}[x] \backslash \mathbb{F}(i \geq 1)$, we usually write $\left[b_{0}, b_{1}, b_{2}, \ldots\right]$ for $\left[b_{0} ; 1, b_{1} ; 1, b_{2} ; 1, \ldots\right]$ and call it a regular continued fractions. A finite continued fraction $\left[b_{0} ; a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{n}, b_{n}\right]$ is called the nth convergent of the continued fraction (1). It is well-known, see e.g. [1], that every $\xi \in \mathbb{F}\left(\left(x^{-1}\right)\right)$ can be uniquely represented by a regular continued fractions, i.e.,

$$
\xi=\left[b_{0} ; b_{1}, b_{2}, b_{3}, \ldots\right]=b_{0}+\frac{1}{b_{1}+} \frac{1}{b_{2}+} \frac{1}{b_{3}+} \ldots
$$

[^0]In this work, we devise an algorithm to construct a non-regular continued fraction, with prescribed partial numerators, for each element in $\mathbb{F}\left(\left(x^{-1}\right)\right)$ uniquely. If the prescribed sequence of partial numerators is $\left\{a_{n}\right\}=\{1,1,1, \ldots\}$, then we recover its regular continued fraction expansion. Apart from proposing the algorithm, its basic properties and its use of rationality characterization are also established.

2 Construction

Throughout, \mathbf{F} denotes $\mathbb{F}\left(\left(x^{-1}\right)\right)$, the field of formal series over a field \mathbb{F}. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a fixed sequence of partial numerators in $\mathbb{F}[x] \backslash\{0\}$. Since elements of \mathbf{F} are formal series (in x) written uniquely under the form:

$$
\xi=c_{m} x^{m}+c_{m-1} x^{m-1}+c_{m-2} x^{m-2}+\ldots
$$

where the coefficients $c_{m}, c_{m-1}, c_{m-2}, \ldots$ are in \mathbb{F}. The degree valuation $|\cdot|$, which is non-archimedean, in \mathbf{F} is defined by

$$
|0|=0, \quad|\xi|=2^{m} \text { if } \xi=c_{m} x^{m}+c_{m-1} x^{m-1}+c_{m-2} x^{m-2}+\ldots, c_{m} \neq 0
$$

The construction of our non-regular continued fraction for ξ with respect to a given sequence of partial numerators $\left\{a_{i}\right\} \subseteq F[x]$, each of whose elements is assumed nonzero, runs as follows: We define

$$
\xi=[\xi]+(\xi),
$$

where

$$
\begin{aligned}
{[\xi] } & :=c_{m} x^{m}+c_{m-1} x^{m-1}+c_{m-2} x^{m-2}+\ldots+c_{1} x+c_{0} \\
(\xi) & :=c_{-1} x^{-1}+c_{-2} x^{-2}+\ldots
\end{aligned}
$$

are referred to as the head and the tail parts of ξ, respectively. Clearly, the head and the tail parts of ξ are uniquely determined. Let

$$
b_{0}=[\xi] \in \mathbb{F}[x] .
$$

Then $\left|b_{0}\right|=|\xi| \geq 1$, provided $[\xi] \neq 0$. If $(\xi)=0$, then the process stops. If $(\xi) \neq 0$, then write $\xi=b_{0}+\frac{1}{\beta_{1}}$, where $\beta_{1}=\frac{1}{(\xi)}$ and so $\left|\beta_{1}\right|>1$. Now write

$$
\xi=b_{0}+\frac{a_{1}}{a_{1} \beta_{1}}
$$

Since $1 \leq\left|a_{1}\right|<\left|a_{1} \beta_{1}\right|$, we can write $a_{1} \beta_{1}=\left[a_{1} \beta_{1}\right]+\left(a_{1} \beta_{1}\right)$. Let

$$
b_{1}=\left[a_{1} \beta_{1}\right] \in \mathbb{F}[x] \backslash \mathbb{F},
$$

so that $\left|b_{1}\right|=\left|a_{1} \beta_{1}\right|>\left|a_{1}\right|$. If $\left(a_{1} \beta_{1}\right)=0$, then the process stops. If $\left(a_{1} \beta_{1}\right) \neq 0$, then write $a_{1} \beta_{1}=b_{1}+\frac{1}{\beta_{2}}$, where $\beta_{2}=\frac{1}{\left(a_{1} \beta_{1}\right)}$ so that $\left|\beta_{2}\right|>1$. Next write

$$
a_{1} \beta_{1}=b_{1}+\frac{a_{2}}{a_{2} \beta_{2}}
$$

Since $1 \leq\left|a_{2}\right|<\left|a_{2} \beta_{2}\right|$, put

$$
b_{2}=\left[a_{2} \beta_{2}\right] \in \mathbb{F}[x] \backslash \mathbb{F},
$$

so that $\left|b_{2}\right|=\left|a_{2} \beta_{2}\right|>\left|a_{2}\right|$. Again, if $\left(a_{2} \beta_{2}\right)=0$, then the process stops. If $\left(a_{2} \beta_{2}\right) \neq 0$, then continue in the same manner. By so doing, we obtain a representation

$$
\begin{aligned}
\xi & =\left[b_{0}: a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{n-1}, b_{n-1} ; a_{n}, a_{n} \beta_{n}\right] \\
& :=b_{0}+\frac{a_{1}}{b_{1}+} \frac{a_{2}}{b_{2}+} \cdots \frac{a_{n-1}}{b_{n-1}+} \frac{a_{n}}{a_{n} \beta_{n}}
\end{aligned}
$$

where $b_{i} \in \mathbb{F}[x], 1 \leq\left|a_{i}\right|<\left|b_{i}\right|(i \geq 1), \quad \beta_{n} \in \mathbf{F},\left|\beta_{n}\right|>1$ if exists.

3 Convergence and Uniqueness

Consider a continued fraction $\xi=\left[b_{0} ; a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots\right]$, where $\left|a_{n}\right|<\left|b_{n}\right|$ $\forall n \geq 1$. Define

$$
\begin{aligned}
A_{-1} & =1, \quad A_{0}=b_{0}, \quad B_{-1}=0, \quad B_{0}=1 \\
A_{n} & =b_{n} A_{n-1}+a_{n} A_{n-2} \quad(n=1,2,3, \ldots) \\
B_{n} & =b_{n} B_{n-1}+a_{n} B_{n-2} \quad(n=1,2,3, \ldots) \\
\xi_{n} & =\left[0: a_{n}, b_{n} ; a_{n+1}, \quad b_{n+1} ; \ldots\right]=\frac{a_{n}}{b_{n}+} \frac{a_{n+1}}{b_{n+1}+} \ldots
\end{aligned}
$$

The next proposition summarizes basic properties of our non-regular continued fractions whose straightforward proof, see e.g. [2], is omitted.

Proposition 3.1. (1) For $\zeta \in \mathbf{F}$, we have

$$
\left[b_{0} ; a_{1}, b_{1} ; \ldots ; a_{n}, b_{n} ; \zeta\right]=\frac{A_{n}+A_{n-1} \zeta}{B_{n}+B_{n-1} \zeta} \quad(n \geq 1)
$$

(2) $\left[b_{0} ; a_{1}, b_{1} ; \ldots ; a_{n}, b_{n}\right]=\frac{A_{n}}{B_{n}} \quad(n \geq 1)$.
(3) $A_{n} B_{n-1}-B_{n} A_{n-1}=(-1)^{n-1} \prod_{i=1}^{n} a_{i} \quad(n \geq 1)$.
(4) $\left|\xi_{n}\right|=\left|\frac{a_{n}}{b_{n}}\right|<1 \quad(n \geq 1)$.
(5) $\left|B_{n+1}\right|>\left|B_{n}\right| \quad(n \geq 1)$
(6) $\left|B_{n}+B_{n-1} \xi_{n+1}\right|=\left|B_{n}\right| \quad(n \geq 1)$.
(7) $\left|B_{n}\right|=\prod_{i=1}^{n}\left|b_{i}\right| \quad(n \geq 1)$.
(8) $\left|B_{n}\right| \geq 2^{n} \quad(n \geq 1)$.
(9) $\frac{A_{n}}{B_{n}}-\xi=\frac{\xi_{n+1}(-1)^{n+1} \prod_{i=1}^{n} a_{i}}{B_{n}\left(B_{n}+B_{n-1} \xi_{n+1}\right)}$.

From the properties (9), (6), (7), (4) and (8), we get

$$
\left|\frac{A_{n}}{B_{n}}-\xi\right|=\frac{\left|\xi_{n+1}\right|\left|\prod_{i=1}^{n} a_{i}\right|}{\left|B_{n}\right|\left|B_{n}+B_{n-1} \xi_{n+1}\right|}=\frac{\left|\xi_{n+1}\right|\left|\prod_{i=1}^{n} a_{i}\right|}{\left|\prod_{i=1}^{n} b_{i}\right|\left|B_{n}\right|}<\frac{1}{\left|B_{n}\right|} \leq \frac{1}{2^{n}} \rightarrow 0 \quad(n \rightarrow \infty)
$$

which shows that our algorithm yields a convergent continued fraction expansion to each $\xi \in \mathbb{F}$. Finally to ensure uniqueness, asume that

$$
b_{0}+\frac{a_{1}}{b_{1}+} \frac{a_{2}}{b_{2}+} \ldots=\xi=b_{0}^{\prime}+\frac{a_{1}}{b_{1}^{\prime}+} \frac{a_{2}}{b_{2}^{\prime}+} \ldots
$$

Since $b_{0}, b_{0}^{\prime} \in \mathbb{F}[x]$, both $\left|\frac{a_{1}}{b_{1}+} \frac{a_{2}}{b_{2}+} \ldots\right|$ and $\left|\frac{a_{1}}{b_{1}^{\prime}+} \frac{a_{2}}{b_{2}^{\prime}+} \ldots\right|$ are <1, we get

$$
b_{0}=[\xi]=b_{0}^{\prime}, \quad \frac{a_{1}}{b_{1}+} \frac{a_{2}}{b_{2}+\ldots}=(\xi)=\frac{a_{1}}{b_{1}^{\prime}+} \frac{a_{2}}{b_{2}^{\prime}+\ldots}
$$

Continue in the same manner, we get $b_{i}=b_{i}^{\prime} \quad(i \geq 0)$.

4 Characterization of Rational Elements

In this section, we show that an element in \mathbf{F} is rational, i.e. belongs to $\mathbb{F}(x)$, if and only if its non-regular continued fraction is finite.

Theorem 4.1. Let $\xi \in \mathbf{F},\left\{a_{n}\right\}_{n=1}^{\infty}$ any sequence in $\mathbb{F}[x] \backslash\{0\}$. Then $\xi \in \mathbb{F}(x)$ if and only if its non-regular continued fraction with respect to $\left\{a_{n}\right\}_{n=1}^{\infty}$ is finite.

Proof. If its non-regular continued fraction is finite, then ξ is clearly rational. Now consider $\xi \in \mathbb{F}(x)$. Let its non-regular continued fraction with respect to $\left\{a_{n}\right\}_{n=1}^{\infty}$ be

$$
\xi=b_{0}+\frac{a_{1}}{b_{1}+} \frac{a_{2}}{b_{2}+} \frac{a_{3}}{b_{3}+} \ldots+\frac{a_{n-1}}{b_{n-1}+\xi_{n}},
$$

where now ξ_{n} must also be rational, so that we can write

$$
\xi_{n}=\frac{p_{n}}{q_{n}}=\frac{a_{n}}{a_{n} q_{n} / p_{n}}, \quad\left|\xi_{n}\right|<1
$$

where $p_{n}, q_{n} \in \mathbb{F}[x]$ are relatively prime. By the division algorithm,

$$
a_{n} q_{n}=d_{n} p_{n}+e_{n},\left|e_{n}\right|<\left|p_{n}\right|,
$$

i.e.,

$$
\frac{a_{n} q_{n}}{p_{n}}=d_{n}+\frac{e_{n}}{p_{n}},\left|\frac{e_{n}}{p_{n}}\right|<1 .
$$

Hence,

$$
d_{n}=\left[\frac{a_{n} q_{n}}{p_{n}}\right]=b_{n}
$$

Since

$$
\xi_{n}=\frac{a_{n}}{a_{n} q_{n} / p_{n}}=\frac{a_{n}}{b_{n}+\frac{e_{n}}{p_{n}}},
$$

we have

$$
\xi_{n+1}=\frac{p_{n+1}}{q_{n+1}}=\frac{e_{n}}{p_{n}} .
$$

From $p_{n} p_{n+1}=e_{n} q_{n+1}$ and p_{n+1}, q_{n+1} being relatively prime, we deduce that $q_{n+1} \mid p_{n}$, and so $\left|q_{n+1}\right| \leq\left|p_{n}\right|$. Thus,

$$
1 \leq\left|q_{n+1}\right| \leq\left|p_{n}\right|<\left|q_{n}\right| .
$$

It follows that there must exist an index n_{0} such that $\left|q_{n_{0}}\right|=1$ which in turn yields $\xi_{n_{0}}=\frac{p_{n_{0}}}{q_{n_{0}}} \in \mathbb{F}[x]$, resulting in a finite continued fraction.

Acknowledgements: I would like to extend sincere thanks to Tuangrat Chaichana for her helpful suggestions both grammatical and mathematical. In addition, I thank Oranit Panprasitwech, Supredee Dangskul, and Jairach Promrak for their advice.

References

[1] T. Chaichana, Continued fractions in fields of positive characteristic, Ph.D. thesis, Chulalongkorn University, Thailand, 2001.
[2] W.B. Jones and W.J. Thron, Continued Fractions, Addison-Wesley Publishing Company, Inc., 1980.

Vichian Laohakosol
Department of Mathematics,
Kasetsart University,
Bangkok 10900, Thailand.
Email: fscivil@ku.ac.th
Panupong Vichitkunakorn
Department of Mathematics,
Prince of Songkla University,
Songkhla 90112, Thailand.
Email: jdai_ming@hotmail.com, s4820523@psu.ac.th

[^0]: * Corresponding author

