VOLUME 1(2009) NUMBER 1, 45-50 http://www.math.sc.chula.ac.th/cjm

Independence Among Various Versions of The Cauchy's Functional Equation

Watcharapon Pimsert*, Vichian Laohakosol and Patanee Udomkavanich

Received 26 July 2008 Revised 30 April 2009 Accepted 3 May 2009

Abstract: The notion of ZI-independence, introduced by Dhombres, among four versions of the Cauchy's functional equation is investigated for solution functions sending the positive real numbers into the complex numbers.

Keywords: Cauchy's functional equation, Independence

2000 Mathematics Subject Classification: 39B32

1 Introduction

The four versions of the classical Cauchy's functional equation are

$$f(x+y) = f(x) + f(y) \tag{A}$$

$$f(xy) = f(x)f(y) \tag{M}$$

$$f(x+y) = f(x)f(y) \tag{E}$$

$$f(xy) = f(x) + f(y) \tag{L}$$

The following independence notion was first introduced by Dhombres in [3]; there he used the word s-independence instead of ZI-independence.

 $[*] Corresponding \ author$

Definition 1.1. Let (α) , (β) be two distinct equations taken from of (A), (M), (E) and (L). The pair $\{(\alpha), (\beta)\}$ is **ZI-independent over** (X,Y) if the only common solution functions $f: X \to Y$ to (α) and (β) are either the zero function or the identity function. In the case X = Y, we simply say $\{(\alpha), (\beta)\}$ is **ZI-independent over** X.

In [3], Dhombres stated the following results without proof:

- The pairs of equations $\{(A),(E)\}$ and $\{(M),(E)\}$ are ZI-independent over a ring.
- The pairs of equations $\{(A),(L)\}$ and $\{(M),(L)\}$ are ZI-independent over $(\mathbb{R}^+,\mathbb{R})$ and they are a fortiori ZI-independent over \mathbb{R} or \mathbb{C} .

We complement Dhombres's work here by investigating ZI-independence among all four versions of the Cauchy's functional equation for solution functions sending the positive real numbers into the complex field.

2 Results

We first prove some auxiliary lemmas with less restriction on the domain and codomain.

Lemma 2.1. Let X be a set, Y an entire ring and $f: X \to Y$. Then $f \equiv 0$ and $f \equiv 2$ are the only solutions of the functional equation

$$f(x) + f(y) = f(x)f(y). \tag{1}$$

Proof. Putting y = x, we obtain $2f(x) = f(x)^2$. Thus, for each $x \in X$, either f(x) = 0 or f(x) = 2.

We proceed to show that either $f \equiv 0$ or $f \equiv 2$. Suppose that there exists x_0 such that $f(x_0) = 2$. Then, f(x) + 2 = 2f(x) $(x \in X)$, implying that $f \equiv 2$. \square

Lemma 2.2. Let Y be a set and $f: \mathbb{R}^+ \to Y$. If f satisfies

$$f(xy) = f(x+y), (2)$$

then f is a constant function.

Proof. Putting y = 1 in (2), we get f(x) = f(x+1). Substituting y+1 for y in (2), we obtain

$$f(xy+x) = f(x(y+1)) = f(x+(y+1)) = f(x+y+1) = f(x+y) = f(xy).$$

Let z, w be distinct elements with z > w. Then, by above equation,

$$f(z) = f(w + (z - w)) = f((z - w)(z - w)^{-1}w + (z - w))$$

= $f((z - w)(z - w)^{-1}w) = f(w)$.

Our first two main results read:

Theorem 2.3. The pairs $\{(A), (E)\}$, $\{(M), (L)\}$ and $\{(A), (L)\}$ are ZI-independent over $(\mathbb{R}^+, \mathbb{C})$ while $\{(M), (E)\}$ is not.

Proof. Observe that both pairs of equation $\{(A), (E)\}$ and $\{(M), (L)\}$ lead to the equation (1). It thus follows from Lemma 2.1 that $f \equiv 0$ or $f \equiv 2$. However, by direct checking, $f \equiv 2$ is not a solution of any of (A), (M), (E) or (L). Hence the pairs (A,E), and (M,L) are ZI-independent over $(\mathbb{R}^+, \mathbb{C})$.

Both pairs of equation $\{(M),(E)\}$ and $\{(A),(L)\}$ yield the equation (2). Hence, by Lemma 2.2, their solutions must be constant functions. Direct checking shows that $f \equiv 0$ or $f \equiv 1$ are the only solutions of the pair $\{(M),(E)\}$ and $f \equiv 0$ is the only solution of the pair $\{(A),(L)\}$. Thus the pair $\{(A),(L)\}$ is ZI-independent over $(\mathbb{R}^+,\mathbb{C})$ while $\{(M),(E)\}$ is not.

Theorem 2.4. The pair $\{(E),(L)\}$ is ZI-independent over $(\mathbb{R}^+,\mathbb{C})$.

Proof. As is well-known, see e.g. [1] or [4], the equation (E) yields $f(q) = f(1)^q$ for all $q \in \mathbb{Q}^+$. Replacing x and y by 1 in (L), we obtain f(1) = f(1) + f(1), which implies f(1) = 0 and so f(q) = 0 for all $q \in \mathbb{Q}^+$.

Let ζ be a positive irrational number. If $\zeta > 1$, then, by (E),

$$f(\zeta) = f(\zeta - 1 + 1) = f(\zeta - 1)f(1) = 0.$$

If $\zeta < 1$, then, by (L),

$$0 = f(1) = f\left(\zeta \frac{1}{\zeta}\right) = f(\zeta) + f\left(\frac{1}{\zeta}\right).$$

Using also the above facts, we deduce $f(\zeta) = -f(\frac{1}{\zeta}) = 0$. Therefore, f is the zero function which implies the ZI-independence of the pair $\{(E),(L)\}$.

It is well-known that for a solution of (A) over \mathbb{Q} , there is a constant $c \in \mathbb{R}$ such that

$$f(x) = cx \quad (x \in \mathbb{Q}). \tag{3}$$

However, a general form of solution to (A) over \mathbb{R} is much more complex; see e.g. Chapter 2 of [4]. Indeed, assuming the axiom of choice there are uncountably many non-continuous solution functions to the Cauchy's functional equation (A), a fact proved in 1905 by Georg Hamel using Hamel bases. Following the work in Chapter 2 of [4], an example of such a class of functions satisfying (A) is given by

$$f_A(x) = r_1 g(h_1) + \dots + r_n g(h_n),$$

where H is a Hamel basis of \mathbb{R} , $x = r_1 h_1 + \cdots + r_n h_n$ ($r_i \in \mathbb{Q}, h_i \in H$) is the unique representation of $x \in \mathbb{R}$ with respect to H, and g is any function defined over H. In the same manner, a particular class of uncountably many non-continuous functions satisfying (M) is given by

$$f_M(x) = \exp\left(R_1 G(h_1) + \dots + R_n G(h_n)\right),\,$$

where $\log x = R_1 h_1 + \cdots + R_n h_n$ is the unique representation of $\log x$ ($x \in \mathbb{R}^+$) with respect to the Hamel basis, H, and G is any function defined over H. It seems likely that there may be a number of common solutions to (A) and (M) and to get a meaningful result about their ZI-independence, some condition(s) may be necessary. To do so, we first note a simple lemma based on the following fact, Corollary 4 on page 15 of [2].

Let $f: \mathbb{R}^+ \to \mathbb{R}$ be a solution of (A). If the image of f is not dense in \mathbb{R} , then f(x) = cx for some constant c.

Lemma 2.5. Let $f: \mathbb{R}^+ \to \mathbb{R}$ be a solution of (A) and assume the image of f is not dense in \mathbb{R} .

- 1. If f(1) = 1, then f is the identity function.
- 2. If f(1) = 0, then f is the zero function.

Proof. Using the fact just mentioned, we deduce f(x) = cx for some constant c. The values f(1) = 1, respectively, f(1) = 0 yield c = 1, respectively, c = 0

Our final result reads:

Theorem 2.6. The pair of functional equations $\{(A), (M)\}$ is ZI-independent over (\mathbb{R}^+, K) where $\mathbb{C} \supset K = K_x + iK_y$ and either K_x or K_y is a non-dense subset of \mathbb{R} .

Proof. Let $f: \mathbb{R}^+ \to K$ be a function satisfying both (A) and (M). Putting x and y equal to 1 in (M), we obtain f(1) = 0 or f(1) = 1. If f(1) = 0, using (M), f is the zero function. Assume that f(1) = 1. In this case, we express

$$f(x) = u(x) + iv(x),$$

where u and v are real-valued functions on \mathbb{R}^+ . Thus, 1 = f(1) = u(1) + iv(1), which implies

$$u(1) = 1 \text{ and } v(1) = 0.$$
 (4)

Consequently, u(q) = q and v(q) = 0 for all $q \in \mathbb{Q}^+$. Since either K_x or K_y is not dense in \mathbb{R} , either the image of u or the image of v cannot be dense in \mathbb{R} . We consider each case separately.

If the image of u is not dense in \mathbb{R} , by Lemma 2.5 and (4), u is the identity function and so f(x) = x + iv(x). By (M),

$$xy + iv(xy) = (x + iv(x))(y + iv(y))$$

= $xy - v(x)v(y) + i\{xv(y) + yv(x)\},\$

i.e., v(x)v(y)=0 for all $x,y\in\mathbb{R}^+$. Consequently, $v\equiv 0$ which implies that f is the identity function.

If the image of v is not dense in \mathbb{R} , by Lemma 2.5 and (4), v is the zero function and so f is a real-valued function. By (M), for each $x \in \mathbb{R}^+$,

$$f(x) = f((\sqrt{x})^2) = f(\sqrt{x})^2 \ge 0,$$

and so the image of f is not dense in \mathbb{R} . Using Lemma 2.5, we obtain that f is the identity function. Therefore $\{(A),(M)\}$ is ZI-independent over (\mathbb{R}^+,K) .

Acknowledgements: This research is supported by the Commission on Higher Education and The Thailand Research Funds through contract number RTA 5180005.

References

- [1] J. Aczél, Lectures on Functional Equation and their Applications, Academic Press, New York, 1966.
- [2] J. Aczél, and J. Dhombres, Functional Equation in Several Variables, Cambridge University Press, 1987.
- [3] J. Dhombres, Relations de dépendance entre les équations fonctionnelles de Cauchy, *Aequationes Math.*, **35**(1988), 186–212.
- [4] J. Smital, On Functions and Functional Equations, Adam Hilger, Bristol and Philadelphis, 1988.

Watcharapon Pimsert¹ and Patanee Udomkavanich² Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Email: ¹pimsert@yahoo.com and ²pattanee.u@chula.ac.th

Vichian Laohakosol
Department of Mathematics,
Kasetsart University,
Bangkok 10900, Thailand.
Email: fscivil@ku.ac.th