Independence Among Various Versions of The Cauchy's Functional Equation

Watcharapon Pimsert*, Vichian Laohakosol and Patanee Udomkavanich

Abstract

The notion of ZI-independence, introduced by Dhombres, among four versions of the Cauchy's functional equation is investigated for solution functions sending the positive real numbers into the complex numbers.

Keywords: Cauchy's functional equation, Independence
2000 Mathematics Subject Classification: 39B32

1 Introduction

The four versions of the classical Cauchy's functional equation are

$$
\begin{align*}
f(x+y) & =f(x)+f(y) \tag{A}\\
f(x y) & =f(x) f(y) \tag{M}\\
f(x+y) & =f(x) f(y) \tag{E}\\
f(x y) & =f(x)+f(y) \tag{L}
\end{align*}
$$

The following independence notion was first introduced by Dhombres in [3]; there he used the word s-independence instead of ZI-independence.

Definition 1.1. Let $(\alpha),(\beta)$ be two distinct equations taken from of (A), (M), (E) and (L). The pair $\{(\alpha),(\beta)\}$ is ZI-independent over (X, Y) if the only common solution functions $f: X \rightarrow Y$ to (α) and (β) are either the zero function or the identity function. In the case $X=Y$, we simply say $\{(\alpha),(\beta)\}$ is ZIindependent over X.

In [3], Dhombres stated the following results without proof:

- The pairs of equations $\{(\mathrm{A}),(\mathrm{E})\}$ and $\{(\mathrm{M}),(\mathrm{E})\}$ are ZI-independent over a ring.
- The pairs of equations $\{(\mathrm{A}),(\mathrm{L})\}$ and $\{(\mathrm{M}),(\mathrm{L})\}$ are ZI-independent over $\left(\mathbb{R}^{+}, \mathbb{R}\right)$ and they are a fortiori ZI-independent over \mathbb{R} or \mathbb{C}.

We complement Dhombres's work here by investigating ZI-independence among all four versions of the Cauchy's functional equation for solution functions sending the positive real numbers into the complex field.

2 Results

We first prove some auxiliary lemmas with less restriction on the domain and codomain.

Lemma 2.1. Let X be a set, Y an entire ring and $f: X \rightarrow Y$. Then $f \equiv 0$ and $f \equiv 2$ are the only solutions of the functional equation

$$
\begin{equation*}
f(x)+f(y)=f(x) f(y) \tag{1}
\end{equation*}
$$

Proof. Putting $y=x$, we obtain $2 f(x)=f(x)^{2}$. Thus, for each $x \in X$, either $f(x)=0$ or $f(x)=2$.

We proceed to show that either $f \equiv 0$ or $f \equiv 2$. Suppose that there exists x_{0} such that $f\left(x_{0}\right)=2$. Then, $f(x)+2=2 f(x) \quad(x \in X)$, implying that $f \equiv 2$.

Lemma 2.2. Let Y be a set and $f: \mathbb{R}^{+} \rightarrow Y$. If f satisfies

$$
\begin{equation*}
f(x y)=f(x+y) \tag{2}
\end{equation*}
$$

then f is a constant function.

Proof. Putting $y=1$ in (2), we get $f(x)=f(x+1)$. Substituting $y+1$ for y in (2), we obtain

$$
f(x y+x)=f(x(y+1))=f(x+(y+1))=f(x+y+1)=f(x+y)=f(x y) .
$$

Let z, w be distinct elements with $z>w$. Then, by above equation,

$$
\begin{aligned}
f(z) & =f(w+(z-w))=f\left((z-w)(z-w)^{-1} w+(z-w)\right) \\
& =f\left((z-w)(z-w)^{-1} w\right)=f(w) .
\end{aligned}
$$

Our first two main results read:
Theorem 2.3. The pairs $\{(\mathrm{A}),(\mathrm{E})\},\{(\mathrm{M}),(\mathrm{L})\}$ and $\{(\mathrm{A}),(\mathrm{L})\}$ are ZI-independent over $\left(\mathbb{R}^{+}, \mathbb{C}\right)$ while $\{(\mathrm{M}),(\mathrm{E})\}$ is not.

Proof. Observe that both pairs of equation $\{(\mathrm{A}),(\mathrm{E})\}$ and $\{(\mathrm{M}),(\mathrm{L})\}$ lead to the equation (1). It thus follows from Lemma 2.1 that $f \equiv 0$ or $f \equiv 2$. However, by direct checking, $f \equiv 2$ is not a solution of any of $(\mathrm{A}),(\mathrm{M}),(\mathrm{E})$ or (L). Hence the pairs (A,E), and (M,L) are ZI-independent over $\left(\mathbb{R}^{+}, \mathbb{C}\right)$.

Both pairs of equation $\{(\mathrm{M}),(\mathrm{E})\}$ and $\{(\mathrm{A}),(\mathrm{L})\}$ yield the equation (2). Hence, by Lemma 2.2, their solutions must be constant functions. Direct checking shows that $f \equiv 0$ or $f \equiv 1$ are the only solutions of the pair $\{(\mathrm{M}),(\mathrm{E})\}$ and $f \equiv 0$ is the only solution of the pair $\{(\mathrm{A}),(\mathrm{L})\}$. Thus the pair $\{(\mathrm{A}),(\mathrm{L})\}$ is ZI-independent over $\left(\mathbb{R}^{+}, \mathbb{C}\right)$ while $\{(\mathrm{M}),(\mathrm{E})\}$ is not.

Theorem 2.4. The pair $\{(\mathrm{E}),(\mathrm{L})\}$ is ZI-independent over $\left(\mathbb{R}^{+}, \mathbb{C}\right)$.
Proof. As is well-known, see e.g. [1] or [4], the equation (E) yields $f(q)=f(1)^{q}$ for all $q \in \mathbb{Q}^{+}$. Replacing x and y by 1 in (L), we obtain $f(1)=f(1)+f(1)$, which implies $f(1)=0$ and so $f(q)=0$ for all $q \in \mathbb{Q}^{+}$.

Let ζ be a positive irrational number. If $\zeta>1$, then, by (E),

$$
f(\zeta)=f(\zeta-1+1)=f(\zeta-1) f(1)=0 .
$$

If $\zeta<1$, then, by (L),

$$
0=f(1)=f\left(\zeta \frac{1}{\zeta}\right)=f(\zeta)+f\left(\frac{1}{\zeta}\right)
$$

Using also the above facts, we deduce $f(\zeta)=-f\left(\frac{1}{\zeta}\right)=0$. Therefore, f is the zero function which implies the ZI-independence of the pair $\{(\mathrm{E}),(\mathrm{L})\}$.

It is well-known that for a solution of (A) over \mathbb{Q}, there is a constant $c \in \mathbb{R}$ such that

$$
\begin{equation*}
f(x)=c x \quad(x \in \mathbb{Q}) \tag{3}
\end{equation*}
$$

However, a general form of solution to (A) over \mathbb{R} is much more complex; see e.g. Chapter 2 of [4]. Indeed, assuming the axiom of choice there are uncountably many non-continuous solution functions to the Cauchy's functional equation (A), a fact proved in 1905 by Georg Hamel using Hamel bases. Following the work in Chapter 2 of [4], an example of such a class of functions satisfying (A) is given by

$$
f_{A}(x)=r_{1} g\left(h_{1}\right)+\cdots+r_{n} g\left(h_{n}\right)
$$

where H is a Hamel basis of $\mathbb{R}, x=r_{1} h_{1}+\cdots+r_{n} h_{n}\left(r_{i} \in \mathbb{Q}, h_{i} \in H\right)$ is the unique representation of $x \in \mathbb{R}$ with respect to H, and g is any function defined over H. In the same manner, a particular class of uncountably many non-continuous functions satisfying (M) is given by

$$
f_{M}(x)=\exp \left(R_{1} G\left(h_{1}\right)+\cdots+R_{n} G\left(h_{n}\right)\right),
$$

where $\log x=R_{1} h_{1}+\cdots+R_{n} h_{n}$ is the unique representation of $\log x\left(x \in \mathbb{R}^{+}\right)$ with respect to the Hamel basis, H, and G is any function defined over H. It seems likely that there may be a number of common solutions to (A) and (M) and to get a meaningful result about their ZI-independence, some condition(s) may be necessary. To do so, we first note a simple lemma based on the following fact, Corollary 4 on page 15 of [2].

Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be a solution of (A). If the image of f is not dense in \mathbb{R}, then $f(x)=c x$ for some constant c.

Lemma 2.5. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be a solution of (A) and assume the image of f is not dense in \mathbb{R}.

1. If $f(1)=1$, then f is the identity function.
2. If $f(1)=0$, then f is the zero function.

Proof. Using the fact just mentioned, we deduce $f(x)=c x$ for some constant c. The values $f(1)=1$, respectively, $f(1)=0$ yield $c=1$, respectively, $c=0$

Our final result reads:

Theorem 2.6. The pair of functional equations $\{(\mathrm{A}),(\mathrm{M})\}$ is ZI-independent over $\left(\mathbb{R}^{+}, K\right)$ where $\mathbb{C} \supset K=K_{x}+i K_{y}$ and either K_{x} or K_{y} is a non-dense subset of \mathbb{R}.

Proof. Let $f: \mathbb{R}^{+} \rightarrow K$ be a function satisfying both (A) and (M). Putting x and y equal to 1 in (M), we obtain $f(1)=0$ or $f(1)=1$. If $f(1)=0$, using (M), f is the zero function. Assume that $f(1)=1$. In this case, we express

$$
f(x)=u(x)+i v(x),
$$

where u and v are real-valued functions on \mathbb{R}^{+}. Thus, $1=f(1)=u(1)+i v(1)$, which implies

$$
\begin{equation*}
u(1)=1 \text { and } v(1)=0 . \tag{4}
\end{equation*}
$$

Consequently, $u(q)=q$ and $v(q)=0$ for all $q \in \mathbb{Q}^{+}$. Since either K_{x} or K_{y} is not dense in \mathbb{R}, either the image of u or the image of v cannot be dense in \mathbb{R}. We consider each case seperately.

If the image of u is not dense in \mathbb{R}, by Lemma 2.5 and (4), u is the identity function and so $f(x)=x+i v(x)$. By (M),

$$
\begin{aligned}
x y+i v(x y) & =(x+i v(x))(y+i v(y)) \\
& =x y-v(x) v(y)+i\{x v(y)+y v(x)\}
\end{aligned}
$$

i.e., $v(x) v(y)=0$ for all $x, y \in \mathbb{R}^{+}$. Consequently, $v \equiv 0$ which implies that f is the identity function.

If the image of v is not dense in \mathbb{R}, by Lemma 2.5 and (4), v is the zero function and so f is a real-valued function. By (M), for each $x \in \mathbb{R}^{+}$,

$$
f(x)=f\left((\sqrt{x})^{2}\right)=f(\sqrt{x})^{2} \geq 0
$$

and so the image of f is not dense in \mathbb{R}. Using Lemma 2.5, we obtain that f is the identity function. Therefore $\{(\mathrm{A}),(\mathrm{M})\}$ is ZI-independent over $\left(\mathbb{R}^{+}, K\right)$.

Acknowledgements: This research is supported by the Commission on Higher Education and The Thailand Research Funds through contract number RTA 5180005.

References

[1] J. Aczél, Lectures on Functional Equation and their Applications, Academic Press, New York, 1966.
[2] J. Aczél, and J. Dhombres, Functional Equation in Several Variables, Cambridge University Press, 1987.
[3] J. Dhombres, Relations de dépendance entre les équations fonctionnelles de Cauchy, Aequationes Math., 35(1988), 186-212.
[4] J. Smital, On Functions and Functional Equations, Adam Hilger, Bristol and Philadelphis, 1988.

Watcharapon Pimsert ${ }^{1}$ and Patanee Udomkavanich ${ }^{2}$
Department of Mathematics, Faculty of Science,
Chulalongkorn University, Bangkok 10330, Thailand.
Email: ${ }^{1}$ pimsert@yahoo.com and ${ }^{2}$ pattanee.u@chula.ac.th

Vichian Laohakosol
Department of Mathematics,
Kasetsart University,
Bangkok 10900, Thailand.
Email: fscivil@ku.ac.th

