Matrix Transformations into A New Sequence Space Related to Invariant Means

Ab Hamid Ganie* and Neyaz Ahmad Sheikh

Received 15 May 2012
Accepted 26 December 2012

Abstract

: In this paper we introduce the sequence space $V_{\infty}(\theta)$ through the concept of invariant means and lacunary sequence space $\theta=\left(k_{r}\right)$, show its completeness property and characterize the matrix classes $\left(l_{\infty}: V_{\infty}(\theta)\right)$ and $\left(l(p): V_{\infty}(\theta)\right)$.

Keywords: Lacunary sequence, invariant means, almost lacunary convergence, matrix transformation

2000 Mathematics Subject Classification: 46A45, 40C05

1 Preliminaries, Background and Notations

A sequence space is defined to be a linear space of real or complex sequences. Throughout the paper \mathbb{N}, \mathbb{R} and \mathbb{C} denotes the set of non-negative integers, the set of real numbers and the set of complex numbers respectively. Let ω denote the space of all sequences (real or complex); l_{∞}, c and c respectively, denotes the space of all bounded sequences, the space of convergent sequences and null sequences. Assume here and after that $\left(p_{k}\right)$ be a bounded sequence of strictly positive real numbers with $\sup _{k} p_{k}=H$ and $M=\max \{1, H\}$. Then, the linear

[^0]spaces $l(p)$ and $l_{\infty}(p)$ were defined by Maddox [8] (see, also [9, 13, 18, 19]) as follows:
$$
l(p)=\left\{x=\left(x_{k}\right): \sum_{k}\left|x_{k}\right|^{p_{k}}<\infty\right\}
$$
and
$$
l_{\infty}(p)=\left\{x=\left(x_{k}\right): \sup _{k}\left|x_{k}\right|^{p_{k}}<\infty\right\}
$$
which are complete spaces paranormed by
$$
g_{1}(x)=\left[\sum_{k}\left|x_{k}\right|^{p_{k}}\right]^{1 / M} \quad \text { and } \quad g_{2}(x)=\sup _{k}\left|x_{k}\right|^{p_{k} / M} \quad \text { iff } \quad \inf p_{k}>0
$$

We shall assume throughout that $p_{k}^{-1}+\left(p_{k}{ }^{\prime}\right)^{-1}$ provided $1<\inf p_{k} \leq H<\infty$.
Let X and Y be two sebsets of ω. Let $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then, the matrix A defines the A-transformation from X into Y, if for every sequence $x=\left(x_{k}\right) \in X$ the sequence $A x=\left\{(A x)_{n}\right\}$, the A-transform of x exists and is in Y; where $(A x)_{n}=\sum_{k} a_{n k} x_{k}$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. By $(X: Y)$, we denote the class of all such matrices. A sequence x is said to be A-summable to l if $A x$ converges to l which is called as the A-limit of x (see $[2,7,8,15,17]$).

Let σ be a one-to-one mapping from the set of positive integers into itself. A continuous linear functional ϕ on l_{∞} is said to be an invariant mean (or a σ mean) if and only if
(i) $\phi(x) \geq 0$, when the sequence $x=\left(x_{n}\right)$ has $x_{n} \geq 0$, for all n,
(ii) $\phi(e)=0$, where $e=(1,1, \ldots)$, and
(iii) $\phi\left(x_{\sigma(n)}=\phi(x)\right.$ for all $x \in l_{\infty}$.

If σ is the translation mapping $n \rightarrow n+1$, then a σ-mean is often called a Banach limit(see, [4, 6, 16]). A σ-mean extends the limit functional on c in the sense that $\phi(x)=\lim x$, for all $x \in c$, if and only if σ has no finite orbits, that is, if and only if for all $n \geq 0, j \geq 1, \sigma^{j}(n) \neq n$ (see, [11, 12]).

A sequence $x \in l_{\infty}$ is said to be a σ-convergent sequence if all its σ-means (or invariant means) are equal. We denote the set of all σ-convergent sequences
by V_{σ}. If $x=\left(x_{n}\right)$, we write $T x=\left(T x_{n}\right)=\left(x_{\sigma(n)}\right)$, then (see [14])

$$
V_{\sigma}=\left\{x \in l_{\infty}: \lim _{p \rightarrow \infty} t_{p n}(x)=L, \text { uniformly in } n, L=\sigma-\lim x\right\},
$$

where,

$$
t_{p n}(x)=\frac{1}{p+1} \sum_{m=0}^{p} x_{\sigma^{m}(n)} .
$$

By lacunary sequence space we mean an increasing seuence $\theta=\left(k_{r}\right)$ of integers, such that $k_{0}=0$ and $h_{r}=k_{r}-k_{r-1} \rightarrow \infty$. Throughout the text the intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ and the ratio $\frac{k_{r}}{k_{r-1}}$ will be abbreviated by q_{r} (see $[1,3,11,12]$).

$2 \quad \sigma$-lacunary bounded sequences

In this section we define the space $V_{\infty}(\theta)$ and investigate its completeness property.
Following $[2,7,8,13,16]$, we define the space $V_{\infty}(\theta)$ as follows:

$$
V_{\infty}(\theta)=\left\{x \in l_{\infty}: \sup _{r, n}\left|t_{r n}(x)\right|<\infty\right\},
$$

where,

$$
t_{r n}(x)=\frac{1}{h_{r}} \sum_{j \in I_{r}} x_{\sigma^{j}(n)} .
$$

We call the space $V_{\infty}(\theta)$ as the space of σ-lacunary bounded sequences. It is clear that $c \subset V_{\sigma} \subset V_{\infty}(\theta) \subset l_{\infty}$.

Theorem 2.1. The space $V_{\infty}(\theta)$ is a Banach space normed by

$$
\begin{equation*}
\|x\|=\sup _{r, n}\left|t_{r n}(x)\right| . \tag{2.1}
\end{equation*}
$$

Proof. The proof is a routine verification, so we left an easy exercise for the reader.

3 Matrix Transformation in $V_{\infty}(\theta)$

In this section we characterize the matrix classes $\left(l_{\infty}(p): V_{\infty}(\theta)\right)$ and $\left(l(p): V_{\infty}(\theta)\right)$.
For the sake of brevity in notation, we shall write,

$$
\begin{equation*}
t_{r n}(A x)=\sum_{k=1}^{\infty} t(n, k, r) x_{k} \tag{3.1}
\end{equation*}
$$

where, $t(n, k, m)=\frac{1}{h_{r}} \sum_{j \in I_{r}} a\left(\sigma^{j}(n), k\right)$ and $a(n, k)$ denotes the elements $a_{n k}$ of the infinite matrix A.

Theorem 3.1. $A \in\left(l_{\infty}(p): V_{\infty}(\theta)\right)$ if and only if there exists $M>1$ such that $\sup _{n, r} \sum_{k}|t(n, k, r)| M^{\frac{1}{p_{k}}}<\infty$.

Proof. Sufficiency: Suppose that $x=\left(x_{k}\right) \in l_{\infty}(p)$. We have

$$
\begin{aligned}
\left|t_{r n}(A x)\right|^{p_{k}} & \leq\left|\sum_{k} t(n, k, r)\right|^{p_{k}}|x|^{p_{k}} \\
& \leq\left|\sum_{k} t(n, k, r)\right|^{p_{k}} \sup _{k}|x|^{p_{k}} .
\end{aligned}
$$

Now taking supremum over n, r on both sides, we get $A x \in V_{\infty}(\theta)$ i.e., $A \in$ $\left(l_{\infty}(p): V_{\infty}(\theta)\right)$.

Necessity: Let $A \in\left(l_{\infty}(p): V_{\infty}(\theta)\right)$. Let us write $\left|q_{r n}(x)\right|=\sup _{r}\left|t_{r n} A(x)\right|$. Then it is easy to that for each $n \geq 0, q_{r n}(x)$ is a continuous semi norm on $l_{\infty}(p)$ and $q_{r n}(x)$ is point wise bounded on $l_{\infty}(p)$. Assume to the contrary that (3.1) is not true. Then there exists $x=\left(x_{k}\right) \in l_{\infty}(p)$ with $\sup _{n} q_{r n}(x)=\infty$. By the principal of condensaton of singularities [11], the set

$$
\left\{x=\left(x_{k}\right) \in l_{\infty}(p): \sup _{n} q_{r n}(x) M^{\frac{1}{p_{k}}}=\infty\right\}
$$

is of second category in $l_{\infty}(p)$ and hence non-empty, that is $x=\left(x_{k}\right) \in l_{\infty}(p)$ with $\sup q_{r n}(x)=\infty$. But this is contradict to to the fact that q_{n} is point wise bounded on $l_{\infty}(p)$. Therefore, by Banach-Steinhauss theorem, there is H such that

$$
\begin{equation*}
q_{r n}(x) \leq H\|x\|_{1} . \tag{3.2}
\end{equation*}
$$

Now define a sequence $x=\left(x_{k}\right)$ by

$$
x_{k}=\left\{\begin{array}{cl}
\operatorname{sgn} t(n, k, r), & \text { for each } n, r, 1 \leq k \leq k_{0} \\
0, & \text { for } k>k_{0}
\end{array}\right.
$$

Then $x \in l_{\infty}(p)$. Applying this sequence to (3.2) we get (3.1), that completes the proof.

Theorem 3.2. $A \in\left(l(p): V_{\infty}(\theta)\right)$ if and only if

$$
\begin{equation*}
\sup _{n, r} \sum_{k}|t(n, k, r)|^{q_{k}} B^{-q_{k}}<\infty \quad\left(1<p_{k}<\infty\right) \tag{3.3}
\end{equation*}
$$

and

$$
\sup _{n, k, r}|t(n, k, r)|^{p_{k}}<\infty \quad\left(0<p_{k} \leq 1\right)
$$

Proof. We only consider the case $1<p_{k}<\infty$, for every $k \in \mathbb{N}$ and the case $0<p_{k} \leq 1$ will follow similarly.

Sufficiency: Suppose that (3.3) holds and $x \in l(p)$. Now, for any $C>0$ and any two complex numbers a and b,

$$
|a b| \leq C\left(\left|a C^{-1}\right|^{q}+|b|^{p}\right) \quad(\text { see }[6])
$$

where $p>1$ and $\frac{1}{p}+\frac{1}{q}=1$.
We have for some integer $B>1$ that

$$
\sum_{k}\left|t(n, k, r) x_{k}\right| \leq B\left(\sum_{k}\left|t(n, k, r) x_{k}\right|^{q_{k}} B^{-q_{k}}+\left|x_{k}\right|^{p_{k}}\right)
$$

for every $x \in l(p)$. Taking the supremum over n, r on both sides and using (3.3), we get $A x \in V_{\infty}(\theta)$ for every $x \in l(p)$ i.e., $A \in\left(l(p): V_{\infty}(\theta)\right)$.

Necessity: Let $A \in\left(l(p): V_{\infty}(\theta)\right)$ and $x \in l(p)$. We put

$$
p_{n}(x)=\sup _{r} \sum_{k}|t(n, k, r)|^{p_{k}} .
$$

Then it is easy to see that for each $n \geq 0, p_{n}(x)$ is a continuous semi norm on $l(p)$ and $p_{n}(x)$ is point wise bounded on $l(p)$. assume to the contrary that (3.3)
is not true. Then there exists $x \in l(p)$ with $\sup _{n} p_{n}(x)=\infty$. by the principal of condensation of singularities (see [11]), the set

$$
\left\{x \in l(p): \sup _{n} p_{n}(x)=\infty\right\}
$$

is of second category in $l(p)$ and hence non-empty, that is $x \in l(p)$ with $\sup _{n} p_{n}(x)=$ ∞. But this is contradiction to the fact that $\left.p_{(} n\right)$ is bounded on $l(P)$. Thus, by Banach-Steinhauss theorem, there is a constant $M>$), such that

$$
\begin{equation*}
p_{n}(x) \leq M\|x\| . \tag{3.4}
\end{equation*}
$$

Now, applying (3.4) to the sequence $x=\left(x_{k}\right)$ defined by Lascarides (see [5]) by replacing $a_{n k}$ by $t(n, k, r)$, we obtained the necessity of (3.3). This completes the proof.

References

[1] M. Aiyub and A.K. Qamare, On a Sequence Space related to Invariant Mean and Matrix Transformations, Int. Math. Forum, 5(50)(2010), 2465-2470.
[2] G. Das and J.K. Sahoo, On some sequence spaces, J. Math. Anal. Appl., 64(1962), 381-398.
[3] A.R. Freedman, J.J. Sember and M. Raphael, Some Cesáro type Summability spaces, Proc. Lond. Math. Soc., 37(1978), 508-520.
[4] A.H. Ganie and N.A. Sheikh, A note on almost convergent sequences and some matrix transformations, Int. J. Mod. Math. Sci., 4(2012), 126-132.
[5] C.G. Lascarides, A study of certain sequence spaces of maddox and generalization of theorem of Iyer, Pacific J. Math., 38(1971), 487-500.
[6] G.G. Lorentz, A contribution to the theory of divergent sequence, Acta Math., 80(1948), 167-190.
[7] I.J. Maddox, Continous and Köthe Toeplitz Duals of certain se quence spaces, Proc. Camb. Phil. Soc., 65(1969), 413-435.
[8] I.J. Maddox, Elements of Functional Analysis, 2nd ed., University Press, Cambridge, (1988).
[9] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, 18(1967), 345-355.
[10] M. Mursaleen, Matrix transformations between some new sequence spaces, Houston J. Math., 9(1983), 505-509.
[11] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford, 34(1983), 77-86.
[12] M. Mursaleen, Some matrix transformtions on sequence spaces of invariant means, Hacet. J. Math. Stat., 38(2009), 259-264.
[13] M. Mursaleen, A.M. Jarrah and S.A. Mohiuddine, Almost convergence through the generalized de la Vallee-Pousin mean, Iran. J. Sci. Technol. Trans. A Sci., 33(2009), 169-177.
[14] H. Nakano, Modulared sequence spaces, Proc. Japan Acad., 27(1995), 508512.
[15] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36(1972), 104-110.
[16] N.A. Sheikh and A.H. Ganie, A new paranormed sequence space and some matrix transformations, Acta Math. Acad. Paedag. Nyíregy., 28(2012), 4758.
[17] N.A. Sheikh and A.H. Ganie, On the λ-convergent sequence and almost convergence, Thai J. Math., to appear.
[18] A. Wilansky, Summability through Functional Analysis, North Holland, (1984).
[19] K. Yosida, Functional Analysis, Springer-Verlag, Berlin, Heidelberg, New York, (1966).

Ab Hamid Ganie
Department of Mathematics
National Institute of Technology
Srinagar, INDIA-190006
Email: ashamidg@rediffmail.com

Neyaz Ahmad Sheikh
Department of Mathematics
National Institute of Technology
Srinagar, INDIA-190006
Email: neyaznit@yahoo.co.in

[^0]: *Corresponding author

