

Matrix Transformations into A New Sequence Space Related to Invariant Means

Ab Hamid Ganie^{*} and Neyaz Ahmad Sheikh

Received 15 May 2012 Accepted 26 December 2012

Abstract:

In this paper we introduce the sequence space $V_{\infty}(\theta)$ through the concept of invariant means and lacunary sequence space $\theta = (k_r)$, show its completeness property and characterize the matrix classes $(l_{\infty} : V_{\infty}(\theta))$ and $(l(p) : V_{\infty}(\theta))$.

Keywords: Lacunary sequence, invariant means, almost lacunary convergence, matrix transformation

2000 Mathematics Subject Classification: 46A45, 40C05

1 Preliminaries, Background and Notations

A sequence space is defined to be a linear space of real or complex sequences. Throughout the paper \mathbb{N} , \mathbb{R} and \mathbb{C} denotes the set of non-negative integers, the set of real numbers and the set of complex numbers respectively. Let ω denote the space of all sequences (real or complex); l_{∞} , c and c respectively, denotes the space of all bounded sequences, the space of convergent sequences and null sequences. Assume here and after that (p_k) be a bounded sequence of strictly positive real numbers with $\sup_k p_k = H$ and $M = max\{1, H\}$. Then, the linear

^{*} Corresponding author

spaces l(p) and $l_{\infty}(p)$ were defined by Maddox [8] (see, also [9, 13, 18, 19]) as follows :

$$l(p) = \{x = (x_k) : \sum_k |x_k|^{p_k} < \infty\}$$

and

$$l_{\infty}(p) = \{x = (x_k) : \sup_k |x_k|^{p_k} < \infty\},\$$

which are complete spaces paranormed by

$$g_1(x) = \left[\sum_k |x_k|^{p_k}\right]^{1/M}$$
 and $g_2(x) = \sup_k |x_k|^{p_k/M}$ iff $\inf p_k > 0$.

We shall assume throughout that $p_k^{-1} + (p_k')^{-1}$ provided $1 < \inf p_k \le H < \infty$.

Let X and Y be two sebsets of ω . Let $A = (a_{nk})$ be an infinite matrix of real or complex numbers a_{nk} , where $n, k \in \mathbb{N}$. Then, the matrix A defines the A-transformation from X into Y, if for every sequence $x = (x_k) \in X$ the sequence $Ax = \{(Ax)_n\}$, the A-transform of x exists and is in Y; where $(Ax)_n = \sum_k a_{nk}x_k$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞ . By (X : Y), we denote the class of all such matrices. A sequence x is said to be A-summable to l if Ax converges to l which is called as the A-limit of x (see [2, 7, 8, 15, 17]).

Let σ be a one-to-one mapping from the set of positive integers into itself. A continuous linear functional ϕ on l_{∞} is said to be an invariant mean (or a σ mean) if and only if

- (i) $\phi(x) \ge 0$, when the sequence $x = (x_n)$ has $x_n \ge 0$, for all n,
- (ii) $\phi(e) = 0$, where e = (1, 1, ...),

and

(iii) $\phi(x_{\sigma(n)} = \phi(x) \text{ for all } x \in l_{\infty}.$

If σ is the translation mapping $n \to n+1$, then a σ -mean is often called a Banach limit(see, [4, 6, 16]). A σ -mean extends the limit functional on c in the sense that $\phi(x) = \lim x$, for all $x \in c$, if and only if σ has no finite orbits, that is, if and only if for all $n \ge 0, j \ge 1, \sigma^j(n) \ne n$ (see, [11, 12]).

A sequence $x \in l_{\infty}$ is said to be a σ -convergent sequence if all its σ -means (or invariant means) are equal. We denote the set of all σ -convergent sequences by V_{σ} . If $x = (x_n)$, we write $Tx = (Tx_n) = (x_{\sigma(n)})$, then (see [14]) $V_{\sigma} = \left\{ x \in l_{\infty} : \lim_{p \to \infty} t_{pn}(x) = L, \text{ uniformly in } n, L = \sigma - \lim x \right\},$

where,

$$t_{pn}(x) = \frac{1}{p+1} \sum_{m=0}^{p} x_{\sigma^m(n)}.$$

By lacunary sequence space we mean an increasing seuence $\theta = (k_r)$ of integers, such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \to \infty$. Throughout the text the intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ will be abbreviated by q_r (see [1, 3, 11, 12]).

2 σ -lacunary bounded sequences

In this section we define the space $V_{\infty}(\theta)$ and investigate its completeness property.

Following [2, 7, 8, 13, 16], we define the space $V_{\infty}(\theta)$ as follows:

$$V_{\infty}(\theta) = \left\{ x \in l_{\infty} : \sup_{r,n} |t_{rn}(x)| < \infty \right\},\$$

where,

$$t_{rn}(x) = \frac{1}{h_r} \sum_{j \in I_r} x_{\sigma^j(n)}.$$

We call the space $V_{\infty}(\theta)$ as the space of σ -lacunary bounded sequences. It is clear that $c \subset V_{\sigma} \subset V_{\infty}(\theta) \subset l_{\infty}$.

Theorem 2.1. The space $V_{\infty}(\theta)$ is a Banach space normed by

$$||x|| = \sup_{r,n} |t_{rn}(x)|.$$
(2.1)

Proof. The proof is a routine verification, so we left an easy exercise for the reader. \Box

3 Matrix Transformation in $V_{\infty}(\theta)$

In this section we characterize the matrix classes $(l_{\infty}(p) : V_{\infty}(\theta))$ and $(l(p) : V_{\infty}(\theta))$.

For the sake of brevity in notation, we shall write,

$$t_{rn}(Ax) = \sum_{k=1}^{\infty} t(n,k,r)x_k$$
 (3.1)

where, $t(n,k,m) = \frac{1}{h_r} \sum_{j \in I_r} a(\sigma^j(n),k)$ and a(n,k) denotes the elements a_{nk} of the infinite matrix A.

Theorem 3.1. $A \in (l_{\infty}(p) : V_{\infty}(\theta))$ if and only if there exists M > 1 such that $\sup_{n,r} \sum_{k} |t(n,k,r)| M^{\frac{1}{p_k}} < \infty$.

Proof. Sufficiency: Suppose that $x = (x_k) \in l_{\infty}(p)$. We have

$$|t_{rn}(Ax)|^{p_k} \leq \left|\sum_k t(n,k,r)\right|^{p_k} |x|^{p_k}$$
$$\leq \left|\sum_k t(n,k,r)\right|^{p_k} \sup_k |x|^{p_k}.$$

Now taking supremum over n, r on both sides, we get $Ax \in V_{\infty}(\theta)$ i.e., $A \in (l_{\infty}(p) : V_{\infty}(\theta))$.

Necessity: Let $A \in (l_{\infty}(p) : V_{\infty}(\theta))$. Let us write $|q_{rn}(x)| = \sup_{r} |t_{rn}A(x)|$. Then it is easy to that for each $n \ge 0$, $q_{rn}(x)$ is a continuous semi norm on $l_{\infty}(p)$ and $q_{rn}(x)$ is point wise bounded on $l_{\infty}(p)$. Assume to the contrary that (3.1) is not true. Then there exists $x = (x_k) \in l_{\infty}(p)$ with $\sup_{n} q_{rn}(x) = \infty$. By the principal of condensaton of singularities [11], the set

$$\left\{x = (x_k) \in l_{\infty}(p) : \sup_{n} q_{rn}(x) M^{\frac{1}{p_k}} = \infty\right\},\$$

is of second category in $l_{\infty}(p)$ and hence non-empty, that is $x = (x_k) \in l_{\infty}(p)$ with $\sup_n q_{rn}(x) = \infty$. But this is contradict to to the fact that q_n is point wise bounded on $l_{\infty}(p)$. Therefore, by Banach-Steinhauss theorem, there is H such that

$$q_{rn}(x) \le H \|x\|_1. \tag{3.2}$$

Now define a sequence $x = (x_k)$ by

$$x_k = \begin{cases} sgn \ t(n,k,r), & \text{for each } n,r,1 \le k \le k_0 \\ 0, & \text{for } k > k_0. \end{cases}$$

Then $x \in l_{\infty}(p)$. Applying this sequence to (3.2) we get (3.1), that completes the proof.

Theorem 3.2. $A \in (l(p) : V_{\infty}(\theta))$ if and only if

$$\sup_{n,r} \sum_{k} |t(n,k,r)|^{q_k} B^{-q_k} < \infty \qquad (1 < p_k < \infty)$$
(3.3)

and

$$\sup_{n,k,r} |t(n,k,r)|^{p_k} < \infty \qquad (0 < p_k \le 1).$$

Proof. We only consider the case $1 < p_k < \infty$, for every $k \in \mathbb{N}$ and the case $0 < p_k \leq 1$ will follow similarly.

Sufficiency: Suppose that (3.3) holds and $x \in l(p)$. Now, for any C > 0 and any two complex numbers a and b,

$$|ab| \le C(|aC^{-1}|^q + |b|^p)$$
 (see [6])

where p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$.

We have for some integer B > 1 that

$$\sum_{k} |t(n,k,r)x_{k}| \le B\left(\sum_{k} |t(n,k,r)x_{k}|^{q_{k}} B^{-q_{k}} + |x_{k}|^{p_{k}}\right)$$

for every $x \in l(p)$. Taking the supremum over n, r on both sides and using (3.3), we get $Ax \in V_{\infty}(\theta)$ for every $x \in l(p)$ i.e., $A \in (l(p) : V_{\infty}(\theta))$.

Necessity: Let $A \in (l(p) : V_{\infty}(\theta))$ and $x \in l(p)$. We put

$$p_n(x) = \sup_r \sum_k |t(n,k,r)|^{p_k}.$$

Then it is easy to see that for each $n \ge 0$, $p_n(x)$ is a continuous semi norm on l(p) and $p_n(x)$ is point wise bounded on l(p). assume to the contrary that (3.3)

is not true. Then there exists $x \in l(p)$ with $\sup_{n} p_n(x) = \infty$. by the principal of condensation of singularities (see [11]), the set

$$\left\{x \in l(p) : \sup_{n} p_n(x) = \infty\right\},\,$$

is of second category in l(p) and hence non-empty, that is $x \in l(p)$ with $\sup p_n(x) = \infty$. But this is contradiction to the fact that p(n) is bounded on l(P). Thus, by Banach-Steinhauss theorem, there is a constant M >), such that

$$p_n(x) \le M \|x\|. \tag{3.4}$$

Now, applying (3.4) to the sequence $x = (x_k)$ defined by Lascarides (see [5]) by replacing a_{nk} by t(n, k, r), we obtained the necessity of (3.3). This completes the proof.

References

- M. Aiyub and A.K. Qamare, On a Sequence Space related to Invariant Mean and Matrix Transformations, *Int. Math. Forum*, 5(50)(2010), 2465–2470.
- [2] G. Das and J.K. Sahoo, On some sequence spaces, J. Math. Anal. Appl., 64(1962), 381–398.
- [3] A.R. Freedman, J.J. Sember and M. Raphael, Some Cesáro type Summability spaces, Proc. Lond. Math. Soc., 37(1978), 508–520.
- [4] A.H. Ganie and N.A. Sheikh, A note on almost convergent sequences and some matrix transformations, Int. J. Mod. Math. Sci., 4(2012), 126–132.
- [5] C.G. Lascarides, A study of certain sequence spaces of maddox and generalization of theorem of Iyer, *Pacific J. Math.*, 38(1971), 487–500.
- [6] G.G. Lorentz, A contribution to the theory of divergent sequence, Acta Math., 80(1948), 167–190.
- [7] I.J. Maddox, Continous and Köthe Toeplitz Duals of certain se quence spaces, Proc. Camb. Phil. Soc., 65(1969), 413–435.
- [8] I.J. Maddox, *Elements of Functional Analysis*, 2nd ed., University Press, Cambridge, (1988).

- [9] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, 18(1967), 345–355.
- [10] M. Mursaleen, Matrix transformations between some new sequence spaces, Houston J. Math., 9(1983), 505–509.
- [11] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford, 34(1983), 77–86.
- [12] M. Mursaleen, Some matrix transformations on sequence spaces of invariant means, *Hacet. J. Math. Stat.*, 38(2009), 259–264.
- [13] M. Mursaleen, A.M. Jarrah and S.A. Mohiuddine, Almost convergence through the generalized de la Vallee-Pousin mean, *Iran. J. Sci. Tech*nol. Trans. A Sci., **33**(2009), 169–177.
- [14] H. Nakano, Modulared sequence spaces, Proc. Japan Acad., 27(1995), 508– 512.
- [15] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36(1972), 104–110.
- [16] N.A. Sheikh and A.H. Ganie, A new paranormed sequence space and some matrix transformations, Acta Math. Acad. Paedag. Nyíregy., 28(2012), 47– 58.
- [17] N.A. Sheikh and A.H. Ganie, On the λ -convergent sequence and almost convergence, *Thai J. Math.*, to appear.
- [18] A. Wilansky, Summability through Functional Analysis, North Holland, (1984).
- [19] K. Yosida, Functional Analysis, Springer-Verlag, Berlin, Heidelberg, New York, (1966).

Ab Hamid Ganie	Neyaz Ahmad Sheikh
Department of Mathematics	Department of Mathematics
National Institute of Technology	National Institute of Technology
Srinagar, INDIA-190006	Srinagar, INDIA-190006
$\operatorname{Email:}$ ashamidg@rediffmail.com	Email: neyaznit@yahoo.co.in