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Abstract: For a graph G and F ⊆ V (G), if 〈F 〉 is acyclic, then F is said to

be an induced forest of G . The size of a maximum induced forest of G is called

the forest number of G and is denoted by f(G). The purpose of this paper is

to provide a review of recent results and open problems on the forest number of

graphs and in some classes of graphs.
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1 Introduction

We limit our discussion to graphs that are simple and finite. For the most part,

our notation and terminology follows that of Chartrand and Lesniak [9]. Let

G = (V,E) be a graph. It is well known that the cycle rank or Betti number of G is

the minimum number of edges that must be removed in order to eliminate all cycles

in G . The cycle rank of G is denoted by b(G). It is also well known that b(G) has

a simple expression, namely, b(G) = |E(G)| − |V (G)|+ c(G), where c(G) denotes

the number of components of G . The corresponding problem of eliminating all

cycles from a graph by means of deletion of vertices does not have a simple solution.
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For a graph G and F ⊆ V (G), if an induced subgraph 〈F 〉 is acyclic, then F is

said to be an induced forest of G . The size of a maximum induced forest of G is

called the forest number of G and is denoted by f(G). The path number and the

tree number of a graph G can be defined as the maximum order of an induced path

of G denoted by p(G) and the maximum order of an induced tree of G denoted

by t(G). The graph parameter t(G) was first introduced by Erdős, Saks and Sós

[10]. The following theorems were proved in [10].

Theorem 1.1. Let G be a connected graph of order n and size m . Then

t(G) ≥
2n

m − n + 3
.

Theorem 1.2. Let G be a connected graph of order n and radius r . Then

p(G) ≥ 2r − 1.

There is a fairly large literature of papers dealing with the forest number of a

graph, dating from the 1980’s through the present. See, for example, [3], [6], and

[31]. Contemporary interest in this invariant has significantly remained, in part

due to its complementary invariant, known as the decycling number, denoted by

φ(G), see [4] and [5]. The decycling number of a graph G is the minimum number

of vertices that must be removed from G in order to obtain an acyclic graph. Thus

determining the decycling number of a graph is equivalent to finding the maximum

order of an induced forest and the sum of the two numbers equals the order of the

graph. The problem of determining the minimum number of vertices of G whose

removal eliminates all cycles in a graph G is known as the decycling number of G ,

and is denoted by φ(G). Thus for a graph G of order n , φ(G) + f(G) = n . The

decycling number was first proposed by Beineke and Vandell [5].

Note that for a graph G , it is easy to see that F is a maximum induced forest

of G if and only if S = V (G)−F has the minimum cardinality among all subsets

of V (G) whose removal eliminates all cycles in G .

It was shown in [14], that determining the decycling number of an arbitrary

graph is NP-complete (see Problem 7 on the feedback node set in the main theorem

of [14], which asks for a set S ⊆ V (G) of minimum cardinality in a digraph G such

that every directed cycle of G contains a member of S . In fact, the computation

of decycling numbers of the following families of graphs is shown to be NP-hard,

namely, planar graphs, bipartite graphs, perfect graphs, and comparability graphs

(graphs with a transitive orientation). On the other hand, the problem is known
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to be polynomial for various other families, including cubic graphs (see [16, 29]),

permutation graphs (see Liang [17]), and interval and comparability graphs (see

Liang and Chang [18]). These results naturally suggest further investigations

as some good bounds on the parameter and exact results when possible. The

followings are examples of graphs in which their forest numbers are easily obtained.

1. Let G be a graph of order n . Then f(G) = n if and only if G is a forest.

2. Let G be a graph of order n . Then f(G) = n − 1 if and only if G has at

least one cycle and there is a vertex on all of its cycles.

3. Let G be a graph of order n ≥ 2. Then f(G) = 2 if and only if G ∼= Kn .

4. f(Kr,s) = 1 + s if r and s are positive integers satisfying 1 ≤ r ≤ s .

5. f(Kr1,r2···rk
) = 1 + rk if r1, r2, . . . , rk are positive integers satisfying 1 ≤

r1 ≤ r2 ≤ · · · ≤ rk .

6. For the Petersen graph P , f(P ) = 7.

A review of recent results and open problems on the decycling number is pro-

vided by Bau and Beineke [4].

2 Hypercubes and some other families of graphs

The n -dimensional cube (or n -cube) Qn can be defined recursively: Q1 = K2

and Qn = K2 × Qn−1 . An equivalent formulation, as the graph having Z
n
2 as

its vertex set with two vertices adjacent if they differ by exactly one co-ordinate.

The following results of [5] give a lower bound for φ(Qn) and it is equivalent to

an upper bound for f(Qn) as we will state in the followings.

1. Let n ≥ 2, then f(Qn) ≤ 2f(Qn−1).

2. Let n ≥ 2, then f(Qn) ≤ 2n−1 + 2n−1
−1

n−1 .

3. For n ≤ 8, f(Qn) was determined in [5].

n 1 2 3 4 5 6 7 8

f(Qn) 2 3 5 10 18 36 72 144
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While the problem of determining f(Qn) has not yet been solved, Pike proved

some results in [19] as follows. Let A(n, 4) denote the size of a maximum binary

code of length n and minimum Hamming distance 4. Then f(Qn) = 2n−1+A(n, 4)

if and only if Qn has a maximum induced forest F such that Qn −F is an empty

graph.

Another class of graphs for which the decycling number has been studied to

some precision are the grid graphs Pm×Pn , where Pk is the path with k vertices.

The following results were obtained in [5].

Theorem 2.1. If m,n ≥ 3 , then

f(Pm × Pn) ≤

⌈

2mn + m + n − 2

3

⌉

.

Theorem 2.2. For n ≥ 4 ,

1. f(P2 × Pn) = d 3n
2 e ;

2. f(P3 × Pn) = d 9n
4 e ;

3. f(P4 × Pn) = 3n ;

4. f(P5 × Pn) = d 7n
2 e + bn

8 c + 1 ;

5. f(P6 × Pn) = d 13n
3 e ;

6. f(P7 × Pn) = 5n + 1 .

Theorem 2.3. Let m = 6q + r and n = 6s + t with 1 ≤ r, t ≤ 6 . Then

f(Pm × Pn) ≥ max{f(Pr × Pn) − q(2n − 1), f(Pt × Pm) − s(2m − 1)}.

Theorem 2.4. For m,n ≥ 2 ,

f(Pm × Pn) ≥
2mn

3
−

8n − m − 4

3
.

Theorem 2.5. For any positive integers m and n , suppose that n ≡ 0(mod 2)

and m = 3r + 1 . Then

f(Pm × Pn) = (m − r)n + r − 1.

Theorem 2.6. For any positive integers r and s

f(P6r+1 × P4s−1) = 16rs − 2r − 4s − 2.
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The problem of determining the remaining cases of the grid graphs is open.

The following problem is also open.

Problem f(Cm × Cm) =?

Albertson and Berman [2] conjectured that every planar graph has an induced

acyclic subgraph with at least half of the vertices.

Conjecture 2.7. (Albertson and Berman [2]) Every planar graph has an induced

subgraph with at least half of the vertices that is a forest.

Akiyama and Watanabe [1] gave a similar conjecture in the class of bipartite

planar graphs.

Conjecture 2.8. (Akiyama and Watanabe [1]) Every bipartite planar graph has

an induced subgraph with at least 5
8 of the vertices that is a forest.

Note that Conjecture 2.7 would directly imply that every planar graph has an

independent set with at least one-quarter of the vertices, without using the Four

Color Theorem. These questions generalize the independence number in the same

way that generalized coloring problems generalize the chromatic number. On the

other hand Akiyama and Watanabe [1] gave examples showing that Conjectures

2.7 and 2.8 are best possible.

This is related to a result of Borodin [7] on the acyclic chromatic number of

a graph, defined to be the minimum number of colors in a proper coloring of the

graph in which every 2-chromatic subgraph is acyclic. We denote by A(G) for the

acyclic chromatic number of a graph G . Borodin [7] proved the following theorem.

Theorem 2.9. If G is a planar graph, then A(G) ≤ 5 .

As a consequence we have the following theorem.

Theorem 2.10. If G is a planar graph of order n , then f(G) ≥ 2n
5 .

For outer-planar graphs, Hosono [13] proved the following result and showed

in the same paper that this result is best possible.

Theorem 2.11. If G is an outer-planar graph of order n , then f(G) ≥ 2n
3 .

3 Connected subclasses

A switching in a graph is the replacement of two independent edges by two other

independent edges on the same vertices. More precisely, let G be a graph and
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ab, cd ∈ E(G) be independent where ac, bd /∈ E(G). A switching σ(a, b; c, d) on

G is defined by

Gσ(a,b;c,d) = (G − {ab, cd}) + {ac, bd}.

Let G be a graph and V (G) = {v1, v2, . . . , vn} . Then (deg v1,deg v2, . . . ,deg vn)

is called a degree sequence of G . A sequence d : (d1, d2, . . . , dn) of nonnegative

integers is called a graphical sequence if it is a degree sequence of some graph H

and in this case H is called a realization of d . We write rn for the sequence

(r, r, . . . , r) of length n . It is well known that rn is graphical if and only if r is

a nonnegative integer, n is a positive integer, n ≥ r + 1 and nr ≡ 0 (mod 2).

A realization of rn is called an r -regular graph of order n . Furthermore, there

exists a disconnected r -regular graph of order n if and only if n ≥ 2r + 2. We

denote R(d) for the class of all non-isomorphic realizations of d and CR(d) for

the class of all connected realizations of R(d). It is clear that a graph obtained

from G by a switching on G has the same degree sequence as G .

Let d be a graphical sequence and ∅ 6= J ⊆ R(d). Then J is a connected

subclass of R(d) if any two distinct realizations G,H ∈ J , G can be obtained

from H by a sequence of switchings so that all intermediate graphs are in J .

It was found by Havel [12] and later rediscovered by Hakimi [11] that R(d) is

itself a connected subclass of R(d). It was proved by Taylor [28] that CR(d) is

a connected subclass of R(d). Let B(r2n) be the class of all r -regular graphs

of order 2n . It was shown in [30](p. 53) that B(r2n) is a connected subclass of

R(r2n).

Let J be a class of graphs and π be a graph parameter. Then π is said to

satisfy an intermediate value theorem over J if G,H ∈ J with π(G) < π(H),

then for every integer k with π(G) ≤ k ≤ π(H) there is a graph K ∈ J such

that π(K) = k . If a graph parameter π satisfies an intermediate value theorem

over J , then we write (π,J ) ∈ IVT .

Note that if (π,J ) ∈ IVT , then π(J ) = {π(G) : G ∈ J } is uniquely deter-

mined by a(π) = min(π,J ) = min{π(G) : G ∈ J } and b(π) = max(π,J ) =

max{π(G) : G ∈ J } . Then we have π(J ) = {x ∈ Z : a(π) ≤ x ≤ b(π)} . We

proved in [22, 25, 26] that if J is a connected subclass of R(d) and π ∈ {f, χ, ω} ,

then (π,J ) ∈ IVT .
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4 Cubic graphs

The interest of studying the decycling number of cubic graphs was motivated by

the results of Zheng and Lu [31], Alon et al. [3], Liu and Zhao [15], and Bau and

Beineke [4].

The problems of finding upper bounds of f(G), where G runs over a class of

cubic graphs, have been investigated in the literature. First observe that if G is

a cubic graph of order n and F is a maximum induced forest of G , then it is

easy to see that G − F is also a forest. Thus |F | ≥ n
2 . The bound is sharp if

and only if n is a multiple of 4. We proved in [20] that if n = 4q + t, t = 0, 2,

then min(f, 3n) = 2q. Let Min(f, 3n) = min{f(G) : G ∈ CR(3n} . The problems

of finding Min(f, 3n) are more difficult. A cubic tree is a tree whose vertices have

degree 1 or 3. Evidently if T is a cubic tree of order n , then n = 2k + 2, where

k is the number of vertices of degree 3 of T . Let K ′

4 be the graph obtained

from K4 by subdividing one of its edge. Let T denote the family of cubic graphs

obtained by taking cubic trees and replacing each vertex of degree 3 by a triangle

and identifying each vertex of degree 1 to the vertex of degree 2 in a copy of K ′

4 .

A lower bound for the order of maximum induced forest in connected cubic

graphs has been obtained by Liu and Zhao [15] as stated in the following theorem.

Theorem 4.1. Let G be a connected cubic graph of order n ≥ 12 . Then

f(G) = 5
8n − 1

4 if G ∈ T and f(G) ≥ 5
8n if G /∈ T .

We have determined in [20] the value of Min(f, 3n) by observing the following

situation. First observe that if G ∈ T , then G has order 8k + 10, where k is

the number of vertices of degree 3 in the corresponding cubic tree. Thus f(G) =

Min(f, 38k+10) = 5k + 6. We now consider a cubic graph of order 8k + 8. Let

C be a cubic graph of order 8k + 8. Then by Theorem 4.1, f(C) ≥ 5
8 (8k + 8) =

5(k + 1). A cubic graph T obtained by taking cubic tree with k vertices of

degree 3, replacing k − 1 of the vertices by a triangle and attaching a copy of

K ′

4 at every vertex of degree 1. Thus T has order 8k + 8 and f(T ) = 5(k + 1).

Thus Min(f, 38k+8) = 5(k + 1). The value of Min(f, 3n), n = 8k + 4, 8k + 6 can

be obtained in the following argument. Since a switching changes the order of

induced forest by at most 1, we have Min(f, 3p+q) ≤ Min(f, 3p) + Min(f, 3q) + 1

for all even integers p and q with 4 ≤ p ≤ q . Thus 5k + 4 = d 5
8 (8k + 6)e ≤

Min(f, 38k+6) ≤ Min(f, 34)+Min(f, 38(k−1)+10)+1 = 2+5(k−1)+6+1 = 5k +4.
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Finally 5k+3 = d 5
8 (8k+4)e ≤ Min(f, 38k+4) ≤ Min(f, 34)+Min(f, 38(k−1)+8)+1 =

2 + 5k + 1 = 5k + 3. Therefore we obtained in [20] the following theorems.

Theorem 4.2. Let n be an even integer with n ≥ 12 . Then

Min(f, 3n) =

{

5
8n − 1

4 if n ≡ 2(mod 8),

d 5
8ne otherwise.

In [27], there are five connected cubic graphs of order 8, all of which having

maximum induced forests of order 5. Alon et al. proved in [3] that if G is

a {K4,K
′

4}-free graph with maximum degree 3, order n and of size m , then

f(G) ≥ n− m
4 . Consequently, if G is a cubic {K4,K

′

4}-free graph of order n ≥ 10,

then f(G) ≥ 5n
8 . Zheng and Lu proved in [31] that f(G) ≥ 2n

3 for any connected

cubic graph G of order n without triangles, except for two cubic graphs with

n = 8. They also pointed out that this lower bound is best possible. It is easy

to see that there exists a cubic graph G of order n containing triangles and

f(G) ≥ 2n
3 . We have extended their result by proving that f(G) ≥ 2n

3 for any

connected cubic K ′

4 -free graph G of order n ≥ 10 as stated in the following

results.

Theorem 4.3. Let G be a connected triangle-free graph of order n and ∆(G) =

3 . If G is not a cubic graph, then f(G) ≥ 2n
3 .

Theorem 4.4. Let X = CR(38) ∪ {K4,K
′

4} and let G be an X -free graph of

order n with ∆(G) = 3 . Then f(G) ≥ 2n
3 .

Theorem 4.5. Let G be a connected cubic K ′

4 -free graph of order n , n ≥ 6

and n 6= 8 . Then f(G) ≥ 2n
3 .

We constructed in [8] a class of connected triangle-free graphs Jn of order n

to show that min(f,Jn) = d 2n
3 e as follows.

First observe that

1. f(K3,3) = 4.

2. f(Q3) = 5, where Q3 is the 3-cube.

3. There is a switching σ such that (2K ′

4)
σ is a connected triangle-free graph

and f((2K ′

4)
σ) = 7. Put K = (2K ′

4)
σ .
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4. If e ∈ E(K3,3) and f ∈ E(Q3), then f(K3,3 − e) = 4 and f(Q3 − f) = 6.

Put P = K3,3 − e and Q = Q3 − f .

5. Let n be an even integer with n ≥ 12. Write n = 6q + t, t = 0, 2, 4 and

construct a connected cubic triangle-free graph according to the values of t

5.1 If t = 0, construct graph G of order 6q by taking q copies of P and

joining q appropriate edges between the q copies of P .

5.2 If t = 2, construct graph G of order 6q +2 by taking q−1 copies of P

and a copy of Q and then joining q appropriate edges between them.

5.3 If t = 4, construct a graph G of order 6q + 4 by taking q − 1 copies

of P and a copy of K and then joining q appropriate edges between

them.

6. It is easy to check that the graphs G constructed above satisfying f(G) =

d 2n
3 e.

Thus we have the following theorem.

Theorem 4.6. [8] min(f,Jn) = d 2n
3 e.

In 2002, the following problems were posed in [4]. We rewrite the problems in

terms of the forest number.

Problem 1. Which cubic graphs G of order 2n satisfy f(G) = b 3n−1
2 c?

Problem 2. Which cubic planar graphs G of order 2n satisfy f(G) = b 3n−1
2 c?

We solved the problems in [20] and [21], respectively, as stated in the following

results.

Theorem 4.7. [20] Let G be a cubic graph of order 2n , then f(G) ≤ b 3n−1
2 c .

Theorem 4.8. [21] Let G be a cubic planar graph of order 2n , then f(G) ≤

b 3n−1
2 c .

We have also construct graphs to show that the bound in above theorems

are sharp. Let R(32n; b 3n−1
2 c) be the class of cubic graphs G of order 2n with

f(G) = b 3n−1
2 c . Some characterization of graphs in R(32n; b 3n−1

2 c) were obtained

in [20]. In addition we proved the following results.
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Lemma 4.9. Let G be a cubic graph of order 2n , n is an odd integer, with

f(G) = 3n−1
2 . If G has a path PN as a maximum induced forest, where N = 3n−1

2 ,

then GN can be obtained from G by a finite sequence of switchings σ1, σ2, . . . , σk

such that for all i = 1, 2, . . . , k , Gσ1σ2...σi is a cubic graph with PN as its induced

forest.

Lemma 4.10. Let G be a cubic graph of order 2n , n is an odd integer, with

f(G) = 3n−1
2 . If G does not have PN as its maximum induced forest. Then a cubic

graph GN can be obtained from G by a finite sequence of switchings σ1, σ2, . . . , σk

such that for all i = 1, 2, . . . , k , Gσ1σ2...σi ∈ R(32n; 3n−1
2 ) and Gσ1σ2...σk = GN .

Similar argument can be made to obtain the same result for cubic graphs of

order 2n and n is even.

Combining the results in this section, we have the following theorem.

Theorem 4.11. (f,R(32n, b 3n−1
2 c)) ∈ IVT .

We continued in investigating in [21] all cubic planar graphs G of order 2n

with f(G) = b 3n−1
2 c . Let P(32n) be the class of all connected cubic planar graphs

of order 2n and P(32n, b 3n−1
2 c) be the class of cubic planar graphs G of order

2n with f(G) = b 3n−1
2 c . We can ask the following questions.

1. Is (f,P(32n)) ∈ IVT?

2. What are min{f(G) : G ∈ P(32n)} and max{f(G) : G ∈ P(32n)}?

3. Which cubic planar graphs G of order 2n satisfy f(G) = b 3n−1
2 c? (Problem 2)

4. Is P(32n, b 3n−1
2 c) a connected subclass?

We answered all of the questions in [21]. Most of the proofs are constructed

and we state the results as follows.

Theorem 4.12. (Question 1) (f,P(32n)) ∈ IVT .

Theorem 4.13. (Question 2)

min{f(G) : G ∈ P(32n)} = Min(f, 32n) and

max{f(G) : G ∈ P(32n)} = max(f, 32n).
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We constructed all cubic planar graphs G of order 2n with f(G) = 3n−1
2 in

[21] and proved the following result as an answer to the question 2.

Theorem 4.14. P(32n, b 3n−1
2 c) is a connected subclass.

Several subclasses of CR(3n) have been further investigated in [8]. In particular

Let J1 = CR(3n) and J2 be the class of connected cubic K ′

4 -free graphs of order

n , where K ′

4 is a graph obtained from K4 and a subdivision to an edge. Put J3

for the class of connected cubic triangle-free graphs of order n . It is clear that

J3 ⊆ J2 ⊆ J1 . Let Xn = {J1,J2,J3,J1 − J2,J1 − J3,J2 − J3} .

We proved in [8] the following results.

Theorem 4.15. If J ∈ Xn , then (f,J ) ∈ IVT .

Theorem 4.16. Let Xn = {J1,J2,J3,J1 − J2,J1 − J3,J2 − J3} . Then

1. max(f,J1) = max(f,J2) = max(f,J3) = b 3n−2
4 c ,

2. max(f,J1 − J3) = max(f,J2 − J3) = b 3n−2
4 c ,

3. max(f,J1 − J2) = b 3n−4
4 c ,

4. Let n be an even integer with n ≥ 12 . If J ∈ {J1,J1 − J2,J1 − J2} , then

min(f,J ) =

{

5
8n − 1

4 if n ≡ 2(mod 8),

d 5
8ne otherwise,

5. Let G be a connected cubic K ′

4 -free graph of order n 6= 8 . Then f(G) ≥ 2n
3 ,

6. min(f,J2) = min(f,J3) = min(f,J2 − J3) = d 2n
3 e.

5 Regular Graphs

As the results Havel [12], Taylor in [28] and the fact that if G is a graph and

σ is a switching on G , then |f(G) − f(Gσ)| ≤ 1, we obtained that (f,J ) ∈ IVT

where J ∈ {R(d), CR(d)} . Thus f(J ) is uniquely determined by min(f,J ) and

max(f,J ).

By using the probabilistic method, we found in [24] a lower bound of min(f,d).

In particular we proved the following theorem.
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Theorem 5.1. Let G be a graph with degree sequence d = (d1, d2, . . . , dn), d1 ≥

d2 ≥ . . . dn ≥ 1. Then

f(G) ≥ 2

n
∑

i=1

1

di + 1
.

As a consequence of the theorem and elementary arithmetic, we obtained the

following results.

Corollary 5.2. If the average degree of G is at most d , then f(G) ≥ 2n
d+1 .

Corollary 5.3. Let G be an r -regular graph of order n . Then f(G) ≥ 2n
r+1 .

We further proved that the bound is sharp in the class of graphs of order n

and of maximum degree ∆ = d1 .

Theorem 5.4. Let d = (d1, d2, . . . , dn), d1 ≥ d2 ≥ · · · ≥ dn ≥ 1 be a graphical

sequence and d1 + 1 ≤ n ≤ 2d1 + 1. Then

1. min(f,d) = 2 if and only if d1 = d2 = d3 = · · · = dn and n = d1 + 1 and

2. if d does not have a complete graph as its realization, then min(f,d) = 3 if

and only if d has a union of stars as its realization.

Let G(∆, n) be the class of graphs of order n and of maximum degree ∆. We

proved in [22] the following results.

Theorem 5.5. Let n = (∆ + 1)q + t, 0 ≤ t ≤ ∆. Then

1. min(f,G(∆, n)) = 2q, if t = 0,

2. min(f,G(∆, n)) = 2q + 1, if t = 1, and

3. min(f,G(∆, n)) = 2q + 2, if 2 ≤ t ≤ ∆.

Theorem 5.6. For r ≥ 3 , and n = r + j , 1 ≤ j ≤ r + 1

1. min(f, rn) = 2 if and only if n = r + 1 ,

2. min(f, rn) = 3 if and only if n = r + 2 ,

3. min(f, rn) = 4 , for all even integers n , r + 3 ≤ n ,

4. min(f, rn) = 4 , for all odd integers n , r + 3 ≤ n and n ≥ f(j),
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5. min(f, rn) = 5 , for all odd integers n , r + 3 ≤ n and n < f(j) ,

where f(j) = 5
2 (j − 1) if j ≡ 3(mod 4) , and

f(j) = 1 + 5
2 (j − 1) if j ≡ 1(mod 4).

Theorem 5.7. For n ≥ 2r + 2 and r ≥ 3, write n = (r + 1)q + t, q ≥ 2 and

0 ≤ t ≤ r. Then

1. min(f, rn) = 2q if t = 0 ,

2. min(f, rn) = 2q + 1 if t = 1 ,

3. min(f, rn) = 2q + 2 if 2 ≤ t ≤ r − 1 ,

4. min(f, rn) = 2q + 3 if t = r.

We obtained in [22] the values of max(f, rn), for all r and n as stated in the

following theorem.

Theorem 5.8.

max(f, rn) =

{

n − r + 1 if r + 1 ≤ n ≤ 2r − 1,

b nr−2
2(r−1)c if n ≥ 2r.

Let Min(f, rn) = min{f(G) : G ∈ CR(rn)} and Max(f, rn) = max{f(G) : G ∈

CR(rn)} . We obtained the values of Min(f, rn) and Max(f, rn) in [23] as stated

in the following results.

Theorem 5.9. Max(f, rn) = max(f, rn) in all situations.

Theorem 5.10. Min(f, rn) = min(f, rn) for all r and n with r+1 ≤ n ≤ 2r+1 .

In order to obtain the value of Min(f, rn) in other cases, we proved in [23] the

following theorem.

Theorem 5.11. Let G be a connected r -regular graph of order n ≥ 2r +2 . Then

f(G) ≥ 2n
r

for all r ≥ 4 .

Note that we improved a lower bound for Min(f, rn) from 2n
r+1 = min(f, rn),

for r ≥ 4 and n with n ≥ 2r + 2, to 2n
r

.

Theorem 5.12. Let r and n be integers with r ≥ 4 and n ≥ 2r + 2 . Put

n = rq + t, 0 ≤ t ≤ r − 1 . Then
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Min(f, rn) =











2q if t = 0,

2q + 1 if t = 1, 2,

2q + 2 if r
2 ≤ t ≤ r − 1.

Theorem 5.13. Let r and n be integers with r ≥ 4 and n ≥ 2r + 2 . Put

n = rq + t, 0 ≤ t ≤ r − 1 . Then Min(f, rn) ∈ {2q + 1, 2q + 2} if 3 ≤ t ≤ r
2 .

Conjecture 5.14. Let r and n be integers with r ≥ 4 and n ≥ 2r + 2 . Put

n = rq + t, 0 ≤ t ≤ r − 1 . Then Min(f, rn) = 2q + 2 if 3 ≤ t ≤ r
2 .
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