Neighborhood Connected 2-Domination Number and Connectivity of Graphs

C. Sivagnanam, M.P. Kulandaivel* and P. Selvaraju

Received 20 June 2011
Accepted 31 December 2011

Abstract

A subset S of V is called a dominating set in G if every vertex in $V-S$ is adjacent to at least one vertex in S. A set $S \subseteq V$ is called the neighborhood connected 2-dominating set (nc2d-set) of a graph G if every vertex in $V-S$ is adjacent to at least two vertices in S and the induced subgraph $\langle N(S)\rangle$ is connected. The minimum cardinality of a nc2d-set of G is called the neighborhood connected 2-domination number of G and is denoted by $\gamma_{2 n c}(G)$. The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected or trivial graph. In this paper we find an upper bound for the sum of the neighborhood connected 2-domination number and connectivity of a graph and characterize the corresponding extremal graphs.

Keywords: Neighborhood connected 2-domination number, Connectivity
2000 Mathematics Subject Classification: 05C69

1 Introduction

By a graph $G=(V, E)$ we mean a finite, undirected and connected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. The degree of any vertex u in G is the number of edges incident with u and is denoted by $\operatorname{deg}(u)$. The minimum and maximum degree of a graph

[^0]G is denoted by $\delta(G)$ and $\Delta(G)$, respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [1] and Haynes et.al [2, 3].

Let $v \in V$. The open neighborhood and closed neighborhood of v are denoted by $N(v)$ and $N[v]=N(v) \cup\{v\}$ respectively. If $S \subseteq V$ then $N(S)=\bigcup_{v \in S} N(v)$ for all $v \in S$ and $N[S]=N(S) \cup S$. If $S \subseteq V$ and $u \in S$ then the private neighbor set of u with respect to S is defined by $\operatorname{pn}[u, S]=\{v: N[v] \cap S=\{u\}\}$. $H\left(m_{1}, m_{2}, \cdots, m_{n}\right)$ denotes the graph obtained from the graph H by attaching m_{i} edges to the vertex $v_{i} \in V(H), 1 \leq i \leq n . H\left(P_{m_{1}}, P_{m_{2}}, \cdots, P_{m_{n}}\right)$ is the graph obtained form the graph H by attaching the end vertex of $P_{m_{i}}$ to the vertex v_{i} in $H, 1 \leq i \leq n$.

A subset S of V is called a dominating set of G if every vertex in $V-S$ is adjacent to at least one vertex in S. The minimum cardinality taken over all dominating sets in G is called the domination number of G and is denoted by $\gamma(G)$. The same authors introduced in [5] the concept of neighborhood connected 2-domination in graphs. A set $S \subseteq V$ is called a neighborhood connected 2dominating set (nc2d-set) of a graph G if every vertex in $V-S$ is adjacent to at least two vertices in S and the induced subgraph $\langle N(S)\rangle$ is connected. The minimum cardinality of a nc2d-set of G is called the neighborhood connected 2 -domination number of G and is denoted by $\gamma_{2 n c}(G)$. The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected or trivial graph.

Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and a graph theoretic parameter and characterized the corresponding extremal graphs. J. Paulraj Joseph and S. Arumugam [4] proved that $\gamma(G)+\kappa(G) \leq n$ and characterized the corresponding extremal graphs. In this paper, we obtain a sharp upper bound for the sum of the neighborhood connected 2-domination number and connectivity of a graph and characterize the corresponding extremal graphs. We use the following theorems.

Theorem 1.1. [5] For any graph $G, \gamma_{2 n c}(G) \leq n$ and equality holds if and only if G is isomorphic to K_{2}.

Theorem 1.2. For a graph $G, \kappa(G) \leq \delta(G)$.

2 Main Results

Theorem 2.1. For any graph $G, \gamma_{2 n c}(G)+\kappa(G) \leq 2 n-1$ and equality holds if and only if G is isomorphic to K_{2}.

Proof. $\gamma_{2 n c}(G)+\kappa(G) \leq n+\delta \leq n+n-1=2 n-1$. Let $\gamma_{2 n c}(G)+\kappa(G)=2 n-1$. Then $\gamma_{2 n c}(G)=n$ and $\kappa(G)=n-1$ which gives G is isomorphic to K_{2}. The converse is obvious.

Theorem 2.2. For any graph $G, \gamma_{2 n c}(G)+\kappa(G)=2 n-2$ if and only if G is isomorphic to K_{3}.

Proof. Let $\gamma_{2 n c}(G)+\kappa(G)=2 n-2$. Then there are two cases to consider (i) $\gamma_{2 n c}(G)=n$ and $\kappa(G)=n-2$ (ii) $\gamma_{2 n c}(G)=n-1$ and $\kappa(G)=n-1$. Condition (i) is impossible. Hence condition (ii) holds. Since $\kappa(G)=n-1$ then G is a complete graph. This gives $\gamma_{2 n c}(G)=2$. Then $n=3$ and hence G is isomorphic to K_{3}. The converse is obvious.

Theorem 2.3. For any graph $G, \gamma_{2 n c}(G)+\kappa(G)=2 n-3$ if and only if G is isomorphic to C_{4} or $K_{1,2}$ or K_{4}.

Proof. Let $\gamma_{2 n c}(G)+\kappa(G)=2 n-3$. Then there are three cases to consider (i) $\gamma_{2 n c}(G)=n$ and $\kappa(G)=n-3$ (ii) $\gamma_{2 n c}(G)=n-1$ and $\kappa(G)=n-2$
(iii) $\gamma_{2 n c}(G)=n-2$ and $\kappa(G)=n-1$.

Case 1. $\gamma_{2 n c}(G)=n$ and $\kappa(G)=n-3$.
There is no graph that satisfies this condition.
Case 2. $\gamma_{2 n c}(G)=n-1$ and $\kappa(G)=n-2$.
Then $n-2 \leq \delta(G)$. If $\delta=n-1$ then G is a complete graph which gives a contradiction. Hence $\delta(G)=n-2$. Then G is isomorphic to $K_{n}-Y$ where Y is a matching in G. Then $\gamma_{2 n c}(G) \leq 3$. If $\gamma_{2 n c}(G)=3$ then $n=4$ and hence G is isomorphic to C_{4}. If $\gamma_{2 n c}(G)=2$ then $n=3$ and hence G is isomorphic to $K_{1,2}$. Case 3. $\gamma_{2 n c}(G)=n-2$ and $\kappa(G)=n-1$.

Then G is a complete graph on n vertices. Since $\gamma_{2 n c}=2$ we have $n=4$. Hence G is isomorphic to K_{4}. The converse is obvious.

Theorem 2.4. For any graph $G, \gamma_{2 n c}(G)+\kappa(G)=2 n-4$ if and only if G is isomorphic to P_{4} or K_{5} or $K_{4}-e$ or $K_{1,3}$ or $K_{3}(1,0,0)$.

Proof. Let $\gamma_{2 n c}(G)+\kappa(G)=2 n-4$. Then there are four cases to consider (i) $\gamma_{2 n c}(G)=n$ and $\kappa(G)=n-4$ (ii) $\gamma_{2 n c}(G)=n-1$ and $\kappa(G)=n-3$
(iii) $\gamma_{2 n c}(G)=n-2$ and $\kappa(G)=n-2$ (iv) $\gamma_{2 n c}(G)=n-3$ and $\kappa(G)=n-1$.

Case 1. $\gamma_{2 n c}(G)=n$ and $\kappa(G)=n-4$.
There is no graph that satisfies this condition.
Case 2. $\gamma_{2 n c}(G)=n-1$ and $\kappa(G)=n-3$.
Then $n-3 \leq \delta$. If $\delta=n-1$ then G is a complete graph which is a contradiction. If $\delta=n-2$ then G is isomorphic to $K_{n}-Y$ where Y is a matching in K_{n}. Then $\gamma_{2 n c}(G)=2$ or 3 . If $\gamma_{2 n c}(G)=3$ then $n=4$. Hence G is either $K_{4}-e$ or C_{4}. For these two graphs $\kappa(G)=2 \neq n-3$ which is a contradiction. If $\gamma_{2 n c}(G)=2$ then $n=3$ which gives a contradiction. Hence $\delta=n-3$. Let X be the vertex cut of G with $|X|=n-3$ and let $V-X=\left\{x_{1}, x_{2}, x_{3}\right\}$, $X=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-3}\right\}$.
Subcase 2.1. $\langle V-X\rangle=\overline{K_{3}}$.
Then every vertex of $V-X$ is adjacent to all the vertices in X. Suppose $E(\langle X\rangle)=\phi$ then $|X| \leq 3$ and hence G is isomorphic to $K_{3,3}$ or $K_{2,3}$ or $K_{1,3}$. But $\gamma_{2 n c}\left(K_{3,3}\right)=4 \neq n-1$ and $\gamma_{2 n c}\left(K_{2,3}\right)=3 \neq n-1$. Hence G is isomorphic to $K_{1,3}$. Suppose $E(\langle X\rangle) \neq \phi$. If any $v_{1} \in X$ is adjacent to all the vertices in X and hence $\gamma_{2 n c}(G)=2$ then $n=3$ which is impossible. Hence every vertex in X is not adjacent to at least one vertex in X. Hence $\gamma_{2 n c}(G)=3$. Then $n=4$ which is also impossible.
Subcase 2.2. $\langle V-X\rangle=K_{1} \cup K_{2}$.
Let $x_{1} x_{2} \in E(G)$. Then x_{3} is adjacent to all the vertices in X and x_{1}, x_{2} are not adjacent to at most one vertex in X. If $\operatorname{deg} x_{1}$ or $\operatorname{deg} x_{2}$ is $n-2$ then $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a nc2d-set of G and hence $\gamma_{2 n c} \leq 3$. Then $n \leq 4$ which gives $n=4$. Therefore G is isomorphic to P_{4} or $K_{3}(1,0,0)$.

Suppose $\operatorname{deg} x_{1}=\operatorname{deg} x_{2}=n-3$. If $N\left(x_{1}\right)=N\left(x_{2}\right)$ then there is a vertex $v_{1} \in X$ such that v_{1} is not adjacent to both x_{1} and x_{2}. Then v_{1} is adjacent to all the vertices in X. If $|X| \geq 4$ then $\left\{v_{2}, v_{3}\right\}$ is a nc 2 d -set of G and hence $n \leq 3$ which is a contradiction. If $|X|=3$ then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a nc 2 d -set of G and hence $n=4$ which is a contradiction. If $N\left(x_{1}\right) \neq N\left(x_{2}\right)$ then there are at least 2 vertices v_{1} and v_{2} such that v_{1} is not adjacent to x_{1} but adjacent to x_{2} and v_{2} is not adjacent to x_{2} but adjacent to x_{1}. Then $\left\{x_{1}, x_{2}, x_{3}\right\}$ is an nc2d-set of G and hence $n \leq 4$ which gives a contradiction.
Case 3. $\gamma_{2 n c}(G)=n-2$ and $\kappa(G)=n-2$.
Then $n-2 \leq \delta(G)$. If $\delta=n-1$ then G is a complete graph which gives
a contradiction. Hence $\delta(G)=n-2$. Then G is isomorphic to $K_{n}-Y$ where Y is a matching in K_{n}. Then $\gamma_{2 n c}(G) \leq 3$. If $\gamma_{2 n c}(G)=3$ then $n=5$. But $\gamma_{2 n c}\left(K_{5}-Y\right)=2 \neq n-2$ which is a contradiction. If $\gamma_{2 n c}(G)=2$ then $n=4$. Hence G is isomorphic to $K_{4}-e$.
Case 4. $\gamma_{2 n c}(G)=n-3$ and $\kappa(G)=n-1$.
Then G is a complete graph on n vertices. Since $\gamma_{2 n c}(G)=n-3$ we have $n=5$. Hence G is isomorphic to K_{5}. The converse is obvious.

Theorem 2.5. For any connected graph $G, \gamma_{2 n c}(G)+\kappa(G)=2 n-5$ if and only if G is isomorphic to any one of the following graphs (i) K_{6} (ii) C_{5} (iii) $K_{1,4}$ (iv) P_{5} (v) $K_{5}-Y$ where Y is any matching in K_{5} (vi) $C_{4}(1,0,0,0)$ (vii) $K_{2}(1,2)$ (viii) $K_{3}(2,0,0)$ (ix) The graph $G_{i}, 1 \leq i \leq 3$ given in the following figure.

Proof. Let $\gamma_{2 n c}(G)+\kappa(G)=2 n-5$. Then there are five cases to consider (i) $\gamma_{2 n c}(G)=n$ and $\kappa(G)=n-5$ (ii) $\gamma_{2 n c}(G)=n-1$ and $\kappa(G)=n-4$
(iii) $\gamma_{2 n c}(G)=n-2$ and $\kappa(G)=n-3$ (iv) $\gamma_{2 n c}(G)=n-3$ and $\kappa(G)=n-2$
(v) $\gamma_{2 n c}(G)=n-4$ and $\kappa(G)=n-1$.

Case 1. $\gamma_{2 n c}(G)=n$ and $\kappa(G)=n-5$.
There is no graph that satisfies this condition.
Case 2. $\gamma_{2 n c}(G)=n-1$ and $\kappa(G)=n-4$.
Then $n-4 \leq \delta(G)$. If $\delta(G)=n-1$ then G is a complete graph which is a contradiction. If $\delta(G)=n-2$ then G is isomorphic to $K_{n}-Y$ where Y is a matching in K_{n}. Then $\gamma_{2 n c}(G) \leq 3$. Then $n \leq 4$ which is a contradiction to $\kappa(G)=n-4$. Suppose $\delta(G)=n-3$. Let X be the vertex cut of G with $|X|=n-4$ and let $X=\left\{v_{1}, v_{2}, \ldots, v_{n-4}\right\}, V-X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. If $\langle V-X\rangle$ contains an isolated vertex then $\delta(G) \leq n-4$ which is a contradiction. Hence $\langle V-X\rangle$ is isomorphic to $K_{2} \cup K_{2}$. Also every vertex of $V-X$ is adjacent to all the vertices of X. Then $\gamma_{2 n c}(G)=3$. Hence $n=4$ which is a contradiction. Thus $\delta(G)=n-4$.
Subcase 2.1. $\langle V-X\rangle=\overline{K_{4}}$.

Then every vertex of $V-X$ is adjacent to all the vertices in X. Suppose $E(\langle X\rangle)=\phi$. Then $|X| \leq 4$ and hence G is isomorphic to $K_{s, 4}$ where $s=$ $1,2,3,4$. If $s=2,3$ or 4 then $\gamma_{2 n c}(G)+\kappa(G) \neq 2 n-5$. Hence G is isomorphic to $K_{1,4}$. Suppose $E(\langle X\rangle) \neq \phi$. If any one of the vertices in X say v_{1} is adjacent to all the vertices in X we have that $\gamma_{2 n c}(G) \leq 3$ which gives $n \leq 4$ which is a contradiction. Hence every vertex in X is not adjacent to at least one vertex in X. Hence $\gamma_{2 n c}(G) \leq 4$. Then $n \leq 5$. Since $n \leq 4$ is impossible we have $n=5$ and hence G is isomorphic to $K_{1,4}$.
Subcase 2.2. $\langle V-X\rangle=P_{3} \cup K_{1}$.
Let x_{1} be the isolated vertex in $\langle V-X\rangle$ and $\left(x_{2}, x_{3}, x_{4}\right)$ be a path. Then x_{1} is adjacent to all the vertices in X and x_{2}, x_{4} are not adjacent to at most one vertex in X and hence $\left\{x_{1}, x_{2}, x_{4}, v_{1}\right\}, v_{1} \in X-N\left(x_{2}\right)$ is nc2d-set of G and hence $\gamma_{2 n c} \leq 4$. Thus $n=5$. Then G is isomorphic to P_{5} or $C_{4}(1,0,0,0)$ or $K_{3}(1,1,0)$ or $K_{4}-e(1,0,0,0)$. If G is either $K_{3}(1,1,0)$ or $K_{4}-e(1,0,0,0)$ then $\gamma_{2 n c}(G)+\kappa(G) \neq 2 n-5$. Hence G is P_{5} or $C_{4}(1,0,0,0)$.
Subcase 2.3. $\langle V-X\rangle=K_{3} \cup K_{1}$.
Let x_{1} be the isolated vertex in $\langle V-X\rangle$ and $\left\langle\left\{x_{2}, x_{3}, x_{4}\right\}\right\rangle$ be a complete graph. Then x_{1} is adjacent to all the vertices in X and x_{2}, x_{3}, x_{4} are not adjacent to at most two vertices in X and hence $\left\{x_{1}, x_{2}, x_{3}, v_{1}, v_{2}\right\}$ where $v_{1}, v_{2} \in X-$ $N\left(x_{2} \cup x_{3}\right)$ is a nc2d-set of G and hence $n=5$ or 6 . Suppose $n=5$. Then G is isomorphic to $K_{4}-e(1,0,0,0)$ or $K_{4}(1,0,0,0)$ or $K_{3}\left(P_{3}, P_{1}, P_{1}\right)$.

For these graphs $\gamma_{2 n c}(G)+\kappa(G) \neq 2 n-5$. Suppose $n=6$. Then $\left\{x_{1}, x_{2}, x_{3}, v_{1}\right\}$ or $\left\{x_{1}, x_{2}, x_{3}, v_{2}\right\}$ or $\left\{x_{2}, x_{3}, v_{1}, v_{2}\right\}$ is a nc 2 d -set of G which is a contradiction to $\gamma_{2 n c}=n-1$.
Subcase 2.4. $\langle V-X\rangle=K_{2} \cup \overline{K_{2}}$.
Let $x_{1} x_{2} \in E(G)$ and $x_{3} x_{4} \in E(\bar{G})$. Then each $x_{i}, i=1$ or 2 is non adjacent to at most one vertex in X and each $x_{j}, j=3$ or 4 is adjacent to all the vertices in X. Then $\left\{x_{1}, x_{3}, x_{4}, v_{1}\right\}$ where $v_{1} \in N\left(x_{2}\right) \cap X$ is a nc2d-set of G and hence $n=5$. Then G is isomorphic to $K_{2}(2,1)$ or $K_{3}(2,0)$.
Subcase 2.5. $\langle V-X\rangle=K_{2} \cup K_{2}$.
Let $x_{1} x_{2}, x_{3} x_{4} \in E(G)$. Since $\delta(G)=n-4$ each x_{i} is non adjacent to at most one vertex in X. Then at most one vertex say $v_{1} \in X$ such that $\left|N\left(v_{1}\right) \cap(V-X)\right|=1$. If all $v_{i} \in X$ such that $\left|N\left(v_{i}\right) \cap(V-X)\right| \geq 2$ then $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a nc2d-set of G and hence $n=5$. For this graph $\gamma_{2 n c}(G)+$ $\kappa(G) \neq 2 n-5$. If $\left|N\left(v_{1}\right) \cap(V-X)\right|=1$ and $\left|N\left(v_{i}\right) \cap(V-X)\right| \geq 2$ for $i \neq 2$ then $\left\{x_{1}, x_{2}, x_{3}, x_{4}, v_{1}\right\}$ is a nc2d-set of G and hence $n=6$. For this graph
$\gamma_{2 n c}(G)+\kappa(G) \neq 2 n-5$.
Case 3. $\gamma_{2 n c}(G)=n-2$ and $\kappa(G)=n-3$.
Then $n-3 \leq \delta$. If $\delta=n-1$ then G is a complete graph which is a contradiction. If $\delta=n-2$ then G is isomorphic to $K_{n}-Y$ where Y is any matching in K_{n}. Then $\gamma_{2 n c}(G)=2$ or 3 . If $\gamma_{2 n c}(G)=3$ then $n=5$ which gives a contradiction. If $\gamma_{2 n c}=2$ then $n=4$. Hence G is either $K_{4}-e$ or C_{4}. For these two graphs $\kappa(G)=2 \neq n-3$ which is a contradiction. Hence $\delta=n-3$.

Let X be the vertex cut of G with $|X|=n-3$ and let $V-X=\left\{x_{1}, x_{2}, x_{3}\right\}$, $X=\left\{v_{1}, v_{2}, \ldots, v_{n-3}\right\}$.
Subcase 3.1. $\langle V-X\rangle=\overline{K_{3}}$.
Then every vertex of $V-X$ is adjacent to all the vertices in X. Suppose $E(\langle X\rangle)=\phi$. Then $|X| \leq 3$. If $|X|=1$ or 2 then $\gamma_{2 n c}(G)+\kappa(G) \neq 2 n-5$ and hence G is isomorphic to $K_{3,3}$. If $E(\langle X\rangle) \neq \phi$. If any $v_{1} \in X$ is adjacent to all the vertices in X then $\gamma_{2 n c}(G) \leq 3$. Thus $n \leq 5$. If $n=4$ then G is a star which is a contradiction to $E(\langle X\rangle) \neq \phi$. Hence $n=5$. For this graph $\gamma_{2 n c}=2$ which is a contradiction. Hence there are no vertices of X of degree $n-1$. Then $\gamma_{2 n c}(G) \leq 4$ and hence $n=6$. Hence G is isomorphic to the graph $K_{3,3}+e$. For this graph $\gamma_{2 n c}=3$ which is a contradiction.
Subcase 3.2. $\langle V-X\rangle=K_{1} \cup K_{2}$.
Let $x_{1} x_{2} \in E(G)$. Then x_{3} is adjacent to all the vertices in X and x_{1}, x_{2} are not adjacent to at most one vertex in X. If $\operatorname{deg} x_{1}$ or $\operatorname{deg} x_{2}$ is $n-2$ then $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a nc2d-set of G and hence $\gamma_{2 n c} \leq 3$. Then $n \leq 5$. If $n=4$ then G is isomorphic to P_{4} or $K_{3}(1,0,0)$. But for these graphs $\gamma_{2 n c}(G)+\kappa(G) \neq 2 n-5$. Suppose $n=5$. Let $X=\left\{v_{1}, v_{2}\right\}$. Suppose $v_{1} v_{2} \in E(G)$. If $\operatorname{deg} x_{2}=2$ then G is isomorphic to G_{1}. If $\operatorname{deg} x_{2}=3$ then for this graph $\gamma_{2 n c}(G)+\kappa(G) \neq 2 n-5$. Suppose $v_{1} v_{2} \notin E(G)$ Then G is isomorphic to G_{2} or G_{3}. Suppose $\operatorname{deg} x_{1}=$ $\operatorname{deg} x_{2}=n-3$. If $N\left(x_{1}\right)=N\left(x_{2}\right)$ then there is a vertex $v_{1} \in X$ such that v_{1} is not adjacent to both x_{1} and x_{2}. Then v_{1} is adjacent to all the vertices in X. If $|X| \geq 4$ then $\left\{v_{2}, v_{3}\right\}$ is a nc2d-set of G and hence $n \leq 4$ which is a contradiction. If $|X|=3$ then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a nc2d-set of G and hence $n \leq 5$ which is a contradiction.

If $N\left(x_{1}\right) \neq N\left(x_{2}\right)$ then two vertices say v_{1} and v_{2} such that v_{1} is not adjacent to x_{1} but adjacent to x_{2} and v_{2} is not adjacent to x_{2} but adjacent to x_{1}. Then $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a nc2d-set of G and hence $n \leq 5$. Then G is isomorphic to C_{5} or G_{2}.
Case 4. $\gamma_{2 n c}(G)=n-3$ and $\kappa(G)=n-2$.

Then $n-2 \leq \delta(G)$. If $\delta=n-1$ then G is a complete graph which gives a contradiction. Hence $\delta(G)=n-2$. Then G is isomorphic to $K_{n}-Y$ where Y is a matching in K_{n}. Then $\gamma_{2 n c}(G) \leq 3$. If $\gamma_{2 n c}(G)=3$ then $n=6$. But $\gamma_{2 n c}\left(K_{6}-Y\right)=2 \neq n-3$ which is a contradiction. If $\gamma_{2 n c}(G)=2$ then $n=5$. Hence G is isomorphic to $K_{5}-Y$ where Y is any matching in K_{5}.
Case 5. $\gamma_{2 n c}(G)=n-4$ and $\kappa(G)=n-1$.
Then G is a complete graph on n vertices. Since $\gamma_{2 n c}(G)=n-4$ we have $n=6$. Hence G is isomorphic to K_{6}. The converse is obvious.

References

[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, CRC, 2005.
[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in GraphsAdvanced Topics, Marcel Dekker, Inc., New York, 1998.
[4] J. Paulraj Joseph and S. Arumugam, Domination and Connectivity in graphs, IJMS, 8(1992), 233-236.
[5] C. Sivagnanam, M.P. Kulandaivel and P. Selvaraju, Neighborhood Connected 2-domination in graphs, Int. Math. Forum, 7(40)(2012), 1965-1974.
C. Sivagnanam ${ }^{1}$ and M.P. Kulandaivel ${ }^{2}$

Department of Information Technology
Al Musanna College of Technology
SULTANATE OF OMAN
Email: ${ }^{1}$ choshi71@gmail.com
and ${ }^{2}$ gracempk@yahoo.co.in
P. Selvaraju

Department of Mathematics
VelTech (Owned By RS Trust)
Avadi, Chennai-600062, INDIA
Email: pselvar@yahoo.com

[^0]: *Corresponding author

