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Abstract: A subset S of V is called a dominating set in G if every vertex in V' —S
is adjacent to at least one vertex in S. A set S C V is called the neighborhood
connected 2-dominating set (nc2d-set) of a graph G if every vertex in V — S
is adjacent to at least two vertices in S and the induced subgraph (N(S)) is
connected. The minimum cardinality of a nc2d-set of G is called the neighborhood
connected 2-domination number of G and is denoted by ¥2,,.(G). The connectivity
k(G) of a graph G is the minimum number of vertices whose removal results in a
disconnected or trivial graph. In this paper we find an upper bound for the sum
of the neighborhood connected 2-domination number and connectivity of a graph

and characterize the corresponding extremal graphs.
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1 Introduction

By a graph G = (V, E) we mean a finite, undirected and connected graph with
neither loops nor multiple edges. The order and size of G are denoted by n and
m respectively. The degree of any vertex u in G is the number of edges incident

with « and is denoted by deg(u). The minimum and maximum degree of a graph
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G is denoted by §(G) and A(G), respectively. For graph theoretic terminology
we refer to Chartrand and Lesniak [1] and Haynes et.al [2, 3].

Let v € V. The open neighborhood and closed neighborhood of v are denoted

by N(v) and N[v] = N(v) U {v} respectively. If S CV then N(S)= |J N(v)
veS
for all v € S and N[S] = N(S)US. If S CV and u € S then the private

neighbor set of u with respect to S is defined by pnfu,S] = {v: Nv]NnS = {u}}.
H(my,mg,--- ,m,) denotes the graph obtained from the graph H by attaching
m; edges to the vertex v; € V(H), 1 < i <n. H(Pn,, Pn,, -+, Pn,) is the
graph obtained form the graph H by attaching the end vertex of P,,, to the vertex
v, in H, 1 <71<n.

A subset S of V is called a dominating set of G if every vertex in V — S
is adjacent to at least one vertex in S. The minimum cardinality taken over all
dominating sets in G is called the domination number of G and is denoted by
~v(G). The same authors introduced in [5] the concept of neighborhood connected
2-domination in graphs. A set S C V is called a neighborhood connected 2-
dominating set (nc2d-set) of a graph G if every vertex in V — S is adjacent to
at least two vertices in S and the induced subgraph (N(S)) is connected. The
minimum cardinality of a nc2d-set of G is called the neighborhood connected
2-domination number of G and is denoted by 72,.(G). The connectivity &(G)
of a graph G is the minimum number of vertices whose removal results in a

disconnected or trivial graph.

Several authors have studied the problem of obtaining an upper bound for the
sum of a domination parameter and a graph theoretic parameter and characterized
the corresponding extremal graphs. J. Paulraj Joseph and S. Arumugam [4] proved
that v(G) + k(G) < n and characterized the corresponding extremal graphs.
In this paper, we obtain a sharp upper bound for the sum of the neighborhood
connected 2-domination number and connectivity of a graph and characterize the
corresponding extremal graphs. We use the following theorems.

Theorem 1.1. [5] For any graph G, v2,.(G) < n and equality holds if and only
if G is isomorphic to Ky.

Theorem 1.2. For a graph G, x(G) < §(G).



Neighborhood Connected 2-Domination Number and Connectivity of Graphs 65

2 Main Results

Theorem 2.1. For any graph G, Yonc(G) + k(G) < 2n — 1 and equality holds if
and only if G is isomorphic to Ko.

Proof. 7anc(G)+&(G) <n+d <n+n—1=2n—1. Let v2n.(G) +r(G) = 2n—1.
Then v2,.(G) = n and x(G) = n — 1 which gives G is isomorphic to K5. The

converse is obvious. O

Theorem 2.2. For any graph G, von.(G) + k(G) = 2n — 2 if and only if G is
isomorphic to Ks.

Proof. Let v2,.(G) + k(G) = 2n — 2. Then there are two cases to consider
(i) Y2ne(G) = n and K(G) = n — 2 (ii) Y2n(G) = n—1 and k(G) = n — 1.
Condition (i) is impossible. Hence condition (ii) holds. Since x(G) = n — 1 then
G is a complete graph. This gives v9,.(G) = 2. Then n = 3 and hence G is

isomorphic to Kj3. The converse is obvious. O

Theorem 2.3. For any graph G, Yan.(G) + £(G) = 2n — 3 if and only if G is

isomorphic to Cy or Ky or Ky.

Proof. Let van.(G) + k(G) = 2n — 3. Then there are three cases to consider
(1) Y2ne(G) = n and kK(G) = n — 3 (ii) Y2n(G) = n—1 and K(G) = n — 2
(iil) Y2ne(G) =n —2 and K(G) =n—1.
Case 1. Y2,.(G) =n and x(G) =n — 3.

There is no graph that satisfies this condition.
Case 2. 79,.(G) =n—1 and k(G) =n —2.

Then n —2 < §(G). If 6 =n —1 then G is a complete graph which gives a
contradiction. Hence §(G) = n—2. Then G is isomorphic to K,, —Y where Y is
a matching in G. Then ~9,.(G) < 3. If ~9,.(G) = 3 then n =4 and hence G is
isomorphic to Cy. If vy2,.(G) = 2 then n = 3 and hence G is isomorphic to K 2.
Case 3. Y2,.(G) =n—2 and x(G) =n—1.

Then G is a complete graph on n vertices. Since 2, = 2 we have n = 4.

Hence G is isomorphic to K4. The converse is obvious. O

Theorem 2.4. For any graph G, Yan.(G) + £(G) = 2n — 4 if and only if G is
isomorphic to Py or Ks or Ky —e or Ki3 or K3(1,0,0).
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Proof. Let ~vone(G) + K(G) = 2n — 4. Then there are four cases to consider
(1) Y2ne(G) = n and kK(G) = n —4 (ii) Y2n(G) = n—1 and &(G) = n —3
(iil) Y2ne(G) =n—2 and kK(G) =n—2 (iv) Y2r(G) =n —3 and x(G) =n — 1.
Case 1. 79,.(G) =n and (G) =n —4.

There is no graph that satisfies this condition.

Case 2. 79,.(G) =n—1 and x(G) =n — 3.

Then n —3 < §. If 6 = n—1 then G is a complete graph which is a
contradiction. If § = n—2 then G is isomorphic to K, —Y where Y is a matching
in K,,. Then Y2,.(G) =2 or 3. If v9,.(G) = 3 then n = 4. Hence G is either
K, — e or Cy4. For these two graphs x(G) = 2 # n — 3 which is a contradiction.
If y2nc(G) = 2 then n = 3 which gives a contradiction. Hence 6 = n — 3. Let
X be the vertex cut of G with |X| = n—3 and let V — X = {21,292, 23},
X ={v1,v2,03,...,Un_3}.

Subcase 2.1. (V — X) = K3.

Then every vertex of V' — X is adjacent to all the vertices in X. Suppose
E((X)) = ¢ then |X| < 3 and hence G is isomorphic to K33 or K3 or K 3.
But vonc(K33) =4 # n —1 and yane(K23) =3 #n — 1. Hence G is isomorphic
to K1 3. Suppose E((X)) # ¢. If any v; € X is adjacent to all the vertices in
X and hence v2,.(G) = 2 then n = 3 which is impossible. Hence every vertex in
X is not adjacent to at least one vertex in X . Hence Y2,.(G) = 3. Then n =4
which is also impossible.

Subcase 2.2. (V - X) =K; UK,.

Let 122 € E(G). Then x3 is adjacent to all the vertices in X and 1,9
are not adjacent to at most one vertex in X . If degx, or degxs is n — 2 then
{x1,29,23} is a nc2d-set of G and hence Yo, < 3. Then n < 4 which gives
n = 4. Therefore G is isomorphic to Py or K3(1,0,0).

Suppose degx; = degxo = n — 3. If N(z1) = N(x2) then there is a vertex
v1 € X such that vy is not adjacent to both x; and zs. Then wv; is adjacent
to all the vertices in X . If |X| > 4 then {v2,vs} is a nc2d-set of G and hence
n < 3 which is a contradiction. If |X| = 3 then {v1, v2,v3} is a nc2d-set of G and
hence n = 4 which is a contradiction. If N(z1) # N(z2) then there are at least 2
vertices v; and vy such that vy is not adjacent to x; but adjacent to xo and wvs
is not adjacent to x2 but adjacent to x1. Then {z1,x2,23} is an nc2d-set of G
and hence n < 4 which gives a contradiction.

Case 3. Y2,.(G) =n—2 and x(G) =n —2.
Then n —2 < 0(G). If § = n—1 then G is a complete graph which gives
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a contradiction. Hence §(G) = n — 2. Then G is isomorphic to K,, —Y where
Y is a matching in K,,. Then v2,.(G) < 3. If 72,.(G) = 3 then n = 5. But
Yone(Ks —Y) = 2 # n — 2 which is a contradiction. If y2,.(G) = 2 then n = 4.
Hence G is isomorphic to K4 — e.
Case 4. 79,.(G) =n—3 and k(G) =n — 1.

Then G is a complete graph on n vertices. Since Y2,.(G) = n — 3 we have

n =>5. Hence G is isomorphic to K5. The converse is obvious. O

Theorem 2.5. For any connected graph G, Yanc(G) + k(G) = 2n —5 if and only
if G is isomorphic to any one of the following graphs (i) K¢ (ii) Cs (iii) K14
(iv) Ps (v) K5s=Y where Y is any matching in Ky (vi) C4(1,0,0,0) (vii) Ko(1,2)
(viti) K3(2,0,0) (iz) The graph G;, 1 <i <3 given in the following figure.

Gy Ga Gz

Proof. Let Yone(G) + k(G) = 2n — 5. Then there are five cases to consider
(1) Y2ne(G@) = n and kK(G) = n —5 (ii) Y2re(G) = n—1 and x(G) = n —4
(iii) Y2nc(G) =n —2 and k(G) =n —3 (iv) Yane(G) =n — 3 and k(G) =n — 2
(V) Y2ne(G) =n —4 and x(G) =n—1.
Case 1. 79,.(G) =n and x(G) =n —5.

There is no graph that satisfies this condition.
Case 2. Y9,.(G) =n—1 and k(G) =n —4.

Then n —4 < §(G). If §(G) = n —1 then G is a complete graph which is
a contradiction. If §(G) = n — 2 then G is isomorphic to K, —Y where Y is
a matching in K. Then 7,.(G) < 3. Then n < 4 which is a contradiction
to K(G) = n —4. Suppose 0(G) = n — 3. Let X be the vertex cut of G with
| X|=n—4 and let X = {v1,v2,...,0n-a}, V—X = {21,290, 23, 24}. If (V-X)
contains an isolated vertex then 6(G) < n — 4 which is a contradiction. Hence
(V — X)) is isomorphic to Ks U K. Also every vertex of V — X is adjacent to
all the vertices of X. Then 72,.(G) = 3. Hence n = 4 which is a contradiction.
Thus 6(G) =n — 4.
Subcase 2.1. (V — X) = K.



68 Chamchuri J. Math. 4(2012): C. Sivagnanam, M.P. Kulandaivel and P. Selvaraju

Then every vertex of V — X is adjacent to all the vertices in X. Suppose
E((X)) = ¢. Then |X| < 4 and hence G is isomorphic to K4 where s =
1,2,3,4. If s =2,3 or 4 then Y2,.(G) + k(G) # 2n — 5. Hence G is isomorphic
to K1 4. Suppose E((X)) # ¢. If any one of the vertices in X say v, is adjacent
to all the vertices in X we have that v2,.(G) < 3 which gives n < 4 which is
a contradiction. Hence every vertex in X is not adjacent to at least one vertex
in X. Hence 742,.(G) < 4. Then n < 5. Since n < 4 is impossible we have n =5
and hence G is isomorphic to K 4.

Subcase 2.2. (V- X)=P;UK;.

Let z1 be the isolated vertex in (V — X) and (x2, x3, 4) be a path. Then
x1 is adjacent to all the vertices in X and 2,24 are not adjacent to at most one
vertex in X and hence {z1, x2, x4, v1}, v1 € X — N(x2) is nc2d-set of G and
hence oo < 4. Thus n = 5. Then G is isomorphic to Ps or C4(1,0,0,0) or
K3(1,1,0) or K4y —e(1,0,0,0). If G is either K3(1,1,0) or K4 —e(1,0,0,0) then
Yone(G) + K(G) # 2n — 5. Hence G is Ps or C4(1,0,0,0).

Subcase 2.3. (V- X)=K3UKj.

Let 27 be the isolated vertex in (V — X) and ({x2, 3, 4}) be a complete
graph. Then z; is adjacent to all the vertices in X and x, x3, x4 are not adjacent
to at most two vertices in X and hence {z1, 9, x3, v1, v2} where vy, vo € X —
N(zg Uxs) is a nc2d-set of G and hence n =5 or 6. Suppose n =5. Then G is
isomorphic to K4 —e(1,0,0,0) or K4(1,0,0,0) or K3(Ps, Py, Py).

For these graphs y2,.(G)+£(G) # 2n—5. Suppose n = 6. Then {z1, x2, 23,01}
or {x1, T2, T3, v2} or {x9, x5, v1, U2} is a nc2d-set of G which is a contradiction
to Yope =n — 1.

Subcase 2.4. (V — X) =Ky UK>.

Let z179 € E(G) and 2374 € E(G). Then each z;, i = 1 or 2 is non adjacent
to at most one vertex in X and each x;, 7 = 3 or 4 is adjacent to all the vertices
in X. Then {z1, x3, x4, v1} where v; € N(z3) N X is a nc2d-set of G and hence
n =>5. Then G is isomorphic to K5(2,1) or K3(2,0).

Subcase 2.5. (V — X) = Ky UK.

Let 22,2324 € E(G). Since §(G) = n — 4 each x; is non adjacent to
at most one vertex in X. Then at most one vertex say v; € X such that
IN(n1)N(V=X)|=1. If all v; € X such that |[N(v;) N (V — X)| > 2 then
{1, 2, x3, T4} is a nc2d-set of G and hence n = 5. For this graph ~v2,,.(G) +
K(G)#2n—=5. If [IN(wv))N(V =X)|=1 and |[N(v;) N (V = X)| > 2 for i # 2

then {z1, x9, o3, x4, v1} is a nc2d-set of G and hence n = 6. For this graph
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Yone(@) + K(G) # 20— 5.
Case 3. Y2,.(G) =n—2 and k(G) =n — 3.

Then n —3 < §. If 6 = n—1 then G is a complete graph which is a
contradiction. If § = n — 2 then G is isomorphic to K, —Y where Y is any
matching in K,,. Then v2,.(G) =2 or 3. If v9,.(G) = 3 then n =5 which gives
a contradiction. If ~9,. = 2 then n = 4. Hence G is either K, —e or Cy. For
these two graphs «(G) = 2 # n — 3 which is a contradiction. Hence 6 = n — 3.

Let X be the vertex cut of G with |X|=n—3 and let V — X = {21, 22, 23},
X ={vy,v9,...,0n_3}.

Subcase 3.1. (V — X) = K3.

Then every vertex of V — X is adjacent to all the vertices in X. Suppose
E(X))=¢. Then |X| <3. If |X| =1 or 2 then v9,.(G) + &(G) # 2n — 5 and
hence G is isomorphic to Ks33. If E((X)) # ¢. If any v; € X is adjacent to
all the vertices in X then 72,.(G) < 3. Thus n < 5. If n =4 then G is a star
which is a contradiction to E({X)) # ¢. Hence n = 5. For this graph 72, = 2
which is a contradiction. Hence there are no vertices of X of degree n — 1. Then
Yane(G) < 4 and hence n = 6. Hence G is isomorphic to the graph K335+ e. For
this graph s, = 3 which is a contradiction.

Subcase 3.2. (V - X) =K; UK,.

Let x129 € E(G). Then z3 is adjacent to all the vertices in X and z7, xo
are not adjacent to at most one vertex in X. If degxy or degzs is n — 2 then
{1, 2, x3} is a nc2d-set of G and hence 25, < 3. Then n < 5. If n =4 then G
is isomorphic to Py or K3(1,0,0). But for these graphs vo,.(G) + &(G) # 2n—5.
Suppose n = 5. Let X = {v1, va}. Suppose vivy € E(G). If degaxy =2 then G
is isomorphic to Gp. If degxzo = 3 then for this graph y2,.(G) + k(G) # 2n — 5.
Suppose v1v2 € E(G) Then G is isomorphic to G2 or G3. Suppose degz; =
degxo = n —3. If N(z1) = N(x2) then there is a vertex v; € X such that
v1 is not adjacent to both z; and z5. Then v, is adjacent to all the vertices
in X. If | X| > 4 then {vq, vs} is a nc2d-set of G and hence n < 4 which is a
contradiction. If |X| = 3 then {vy, ve, vz} is a nc2d-set of G and hence n < 5
which is a contradiction.

If N(z1) # N(x2) then two vertices say v; and ve such that v; is not adjacent
to x1 but adjacent to o and v is not adjacent to x5 but adjacent to x;. Then
{z1, z2, x3} is a nc2d-set of G and hence n < 5. Then G is isomorphic to Cj
or Gy.

Case 4. Y2,.(G) =n—3 and x(G) =n —2.
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Then n —2 < 0(G). If § = n—1 then G is a complete graph which gives
a contradiction. Hence §(G) = n — 2. Then G is isomorphic to K,, —Y where
Y is a matching in K,,. Then 72,.(G) < 3. If 72,.(G) = 3 then n = 6. But
Yone(Kg —Y) = 2 #£ n — 3 which is a contradiction. If v9,.(G) = 2 then n =5.
Hence G is isomorphic to K5 —Y where Y is any matching in Kj.
Case 5. Y2,.(G) =n—4 and x(G) =n—1.

Then G is a complete graph on n vertices. Since Y2,.(G) = n — 4 we have

n = 6. Hence G is isomorphic to Kg. The converse is obvious. O]
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