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Abstract: A subset S of V is called a dominating set in G if every vertex in V −S

is adjacent to at least one vertex in S . A set S ⊆ V is called the neighborhood

connected 2-dominating set (nc2d-set) of a graph G if every vertex in V − S

is adjacent to at least two vertices in S and the induced subgraph 〈N(S)〉 is

connected. The minimum cardinality of a nc2d-set of G is called the neighborhood

connected 2-domination number of G and is denoted by γ2nc(G). The connectivity

κ(G) of a graph G is the minimum number of vertices whose removal results in a

disconnected or trivial graph. In this paper we find an upper bound for the sum

of the neighborhood connected 2-domination number and connectivity of a graph

and characterize the corresponding extremal graphs.

Keywords: Neighborhood connected 2-domination number, Connectivity

2000 Mathematics Subject Classification: 05C69

1 Introduction

By a graph G = (V,E) we mean a finite, undirected and connected graph with

neither loops nor multiple edges. The order and size of G are denoted by n and

m respectively. The degree of any vertex u in G is the number of edges incident

with u and is denoted by deg(u). The minimum and maximum degree of a graph
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G is denoted by δ(G) and ∆(G), respectively. For graph theoretic terminology

we refer to Chartrand and Lesniak [1] and Haynes et.al [2, 3].

Let v ∈ V . The open neighborhood and closed neighborhood of v are denoted

by N(v) and N [v] = N(v) ∪ {v} respectively. If S ⊆ V then N(S) =
⋃

v∈S

N(v)

for all v ∈ S and N [S] = N(S) ∪ S. If S ⊆ V and u ∈ S then the private

neighbor set of u with respect to S is defined by pn[u, S] = {v : N [v]∩S = {u}} .

H(m1,m2, · · · ,mn) denotes the graph obtained from the graph H by attaching

mi edges to the vertex vi ∈ V (H), 1 ≤ i ≤ n . H(Pm1
, Pm2

, · · · , Pmn
) is the

graph obtained form the graph H by attaching the end vertex of Pmi
to the vertex

vi in H , 1 ≤ i ≤ n .

A subset S of V is called a dominating set of G if every vertex in V − S

is adjacent to at least one vertex in S . The minimum cardinality taken over all

dominating sets in G is called the domination number of G and is denoted by

γ(G). The same authors introduced in [5] the concept of neighborhood connected

2-domination in graphs. A set S ⊆ V is called a neighborhood connected 2-

dominating set (nc2d-set) of a graph G if every vertex in V − S is adjacent to

at least two vertices in S and the induced subgraph 〈N(S)〉 is connected. The

minimum cardinality of a nc2d-set of G is called the neighborhood connected

2-domination number of G and is denoted by γ2nc(G). The connectivity κ(G)

of a graph G is the minimum number of vertices whose removal results in a

disconnected or trivial graph.

Several authors have studied the problem of obtaining an upper bound for the

sum of a domination parameter and a graph theoretic parameter and characterized

the corresponding extremal graphs. J. Paulraj Joseph and S. Arumugam [4] proved

that γ(G) + κ(G) ≤ n and characterized the corresponding extremal graphs.

In this paper, we obtain a sharp upper bound for the sum of the neighborhood

connected 2-domination number and connectivity of a graph and characterize the

corresponding extremal graphs. We use the following theorems.

Theorem 1.1. [5] For any graph G , γ2nc(G) ≤ n and equality holds if and only

if G is isomorphic to K2 .

Theorem 1.2. For a graph G , κ(G) ≤ δ(G) .
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2 Main Results

Theorem 2.1. For any graph G , γ2nc(G) + κ(G) ≤ 2n − 1 and equality holds if

and only if G is isomorphic to K2 .

Proof. γ2nc(G)+κ(G) ≤ n+δ ≤ n+n−1 = 2n−1. Let γ2nc(G)+κ(G) = 2n−1.

Then γ2nc(G) = n and κ(G) = n − 1 which gives G is isomorphic to K2 . The

converse is obvious.

Theorem 2.2. For any graph G , γ2nc(G) + κ(G) = 2n − 2 if and only if G is

isomorphic to K3 .

Proof. Let γ2nc(G) + κ(G) = 2n − 2. Then there are two cases to consider

(i) γ2nc(G) = n and κ(G) = n − 2 (ii) γ2nc(G) = n − 1 and κ(G) = n − 1.

Condition (i) is impossible. Hence condition (ii) holds. Since κ(G) = n − 1 then

G is a complete graph. This gives γ2nc(G) = 2. Then n = 3 and hence G is

isomorphic to K3 . The converse is obvious.

Theorem 2.3. For any graph G , γ2nc(G) + κ(G) = 2n − 3 if and only if G is

isomorphic to C4 or K1,2 or K4 .

Proof. Let γ2nc(G) + κ(G) = 2n − 3. Then there are three cases to consider

(i) γ2nc(G) = n and κ(G) = n − 3 (ii) γ2nc(G) = n − 1 and κ(G) = n − 2

(iii) γ2nc(G) = n − 2 and κ(G) = n − 1.

Case 1. γ2nc(G) = n and κ(G) = n − 3.

There is no graph that satisfies this condition.

Case 2. γ2nc(G) = n − 1 and κ(G) = n − 2.

Then n − 2 ≤ δ(G). If δ = n − 1 then G is a complete graph which gives a

contradiction. Hence δ(G) = n− 2. Then G is isomorphic to Kn −Y where Y is

a matching in G . Then γ2nc(G) ≤ 3. If γ2nc(G) = 3 then n = 4 and hence G is

isomorphic to C4 . If γ2nc(G) = 2 then n = 3 and hence G is isomorphic to K1,2 .

Case 3. γ2nc(G) = n − 2 and κ(G) = n − 1.

Then G is a complete graph on n vertices. Since γ2nc = 2 we have n = 4.

Hence G is isomorphic to K4 . The converse is obvious.

Theorem 2.4. For any graph G , γ2nc(G) + κ(G) = 2n − 4 if and only if G is

isomorphic to P4 or K5 or K4 − e or K1,3 or K3(1, 0, 0) .
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Proof. Let γ2nc(G) + κ(G) = 2n − 4. Then there are four cases to consider

(i) γ2nc(G) = n and κ(G) = n − 4 (ii) γ2nc(G) = n − 1 and κ(G) = n − 3

(iii) γ2nc(G) = n − 2 and κ(G) = n − 2 (iv) γ2nc(G) = n − 3 and κ(G) = n − 1.

Case 1. γ2nc(G) = n and κ(G) = n − 4.

There is no graph that satisfies this condition.

Case 2. γ2nc(G) = n − 1 and κ(G) = n − 3.

Then n − 3 ≤ δ . If δ = n − 1 then G is a complete graph which is a

contradiction. If δ = n−2 then G is isomorphic to Kn−Y where Y is a matching

in Kn . Then γ2nc(G) = 2 or 3. If γ2nc(G) = 3 then n = 4. Hence G is either

K4 − e or C4 . For these two graphs κ(G) = 2 6= n − 3 which is a contradiction.

If γ2nc(G) = 2 then n = 3 which gives a contradiction. Hence δ = n − 3. Let

X be the vertex cut of G with |X| = n − 3 and let V − X = {x1, x2, x3} ,

X = {v1, v2, v3, . . . , vn−3} .

Subcase 2.1. 〈V − X〉 = K3 .

Then every vertex of V − X is adjacent to all the vertices in X . Suppose

E(〈X〉) = φ then |X| ≤ 3 and hence G is isomorphic to K3,3 or K2,3 or K1,3 .

But γ2nc(K3,3) = 4 6= n − 1 and γ2nc(K2,3) = 3 6= n − 1. Hence G is isomorphic

to K1,3 . Suppose E(〈X〉) 6= φ . If any v1 ∈ X is adjacent to all the vertices in

X and hence γ2nc(G) = 2 then n = 3 which is impossible. Hence every vertex in

X is not adjacent to at least one vertex in X . Hence γ2nc(G) = 3. Then n = 4

which is also impossible.

Subcase 2.2. 〈V − X〉 = K1 ∪ K2 .

Let x1 x2 ∈ E(G). Then x3 is adjacent to all the vertices in X and x1, x2

are not adjacent to at most one vertex in X . If degx1 or degx2 is n − 2 then

{x1, x2, x3} is a nc2d-set of G and hence γ2nc ≤ 3. Then n ≤ 4 which gives

n = 4. Therefore G is isomorphic to P4 or K3(1, 0, 0).

Suppose degx1 = deg x2 = n − 3. If N(x1) = N(x2) then there is a vertex

v1 ∈ X such that v1 is not adjacent to both x1 and x2 . Then v1 is adjacent

to all the vertices in X . If |X| ≥ 4 then {v2, v3} is a nc2d-set of G and hence

n ≤ 3 which is a contradiction. If |X| = 3 then {v1, v2, v3} is a nc2d-set of G and

hence n = 4 which is a contradiction. If N(x1) 6= N(x2) then there are at least 2

vertices v1 and v2 such that v1 is not adjacent to x1 but adjacent to x2 and v2

is not adjacent to x2 but adjacent to x1 . Then {x1, x2, x3} is an nc2d-set of G

and hence n ≤ 4 which gives a contradiction.

Case 3. γ2nc(G) = n − 2 and κ(G) = n − 2.

Then n − 2 ≤ δ(G). If δ = n − 1 then G is a complete graph which gives
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a contradiction. Hence δ(G) = n − 2. Then G is isomorphic to Kn − Y where

Y is a matching in Kn . Then γ2nc(G) ≤ 3. If γ2nc(G) = 3 then n = 5. But

γ2nc(K5 − Y ) = 2 6= n − 2 which is a contradiction. If γ2nc(G) = 2 then n = 4.

Hence G is isomorphic to K4 − e .

Case 4. γ2nc(G) = n − 3 and κ(G) = n − 1.

Then G is a complete graph on n vertices. Since γ2nc(G) = n − 3 we have

n = 5. Hence G is isomorphic to K5 . The converse is obvious.

Theorem 2.5. For any connected graph G , γ2nc(G) + κ(G) = 2n− 5 if and only

if G is isomorphic to any one of the following graphs (i) K6 (ii) C5 (iii) K1,4

(iv) P5 (v) K5−Y where Y is any matching in K5 (vi) C4(1, 0, 0, 0) (vii) K2(1, 2)

(viii) K3(2, 0, 0) (ix) The graph Gi , 1 ≤ i ≤ 3 given in the following figure.

Proof. Let γ2nc(G) + κ(G) = 2n − 5. Then there are five cases to consider

(i) γ2nc(G) = n and κ(G) = n − 5 (ii) γ2nc(G) = n − 1 and κ(G) = n − 4

(iii) γ2nc(G) = n − 2 and κ(G) = n − 3 (iv) γ2nc(G) = n − 3 and κ(G) = n − 2

(v) γ2nc(G) = n − 4 and κ(G) = n − 1.

Case 1. γ2nc(G) = n and κ(G) = n − 5.

There is no graph that satisfies this condition.

Case 2. γ2nc(G) = n − 1 and κ(G) = n − 4.

Then n − 4 ≤ δ(G). If δ(G) = n − 1 then G is a complete graph which is

a contradiction. If δ(G) = n − 2 then G is isomorphic to Kn − Y where Y is

a matching in Kn . Then γ2nc(G) ≤ 3. Then n ≤ 4 which is a contradiction

to κ(G) = n − 4. Suppose δ(G) = n − 3. Let X be the vertex cut of G with

|X| = n− 4 and let X = {v1, v2, . . . , vn−4} , V −X = {x1, x2, x3, x4} . If 〈V −X〉

contains an isolated vertex then δ(G) ≤ n − 4 which is a contradiction. Hence

〈V − X〉 is isomorphic to K2 ∪ K2 . Also every vertex of V − X is adjacent to

all the vertices of X . Then γ2nc(G) = 3. Hence n = 4 which is a contradiction.

Thus δ(G) = n − 4.

Subcase 2.1. 〈V − X〉 = K4 .



68 Chamchuri J. Math. 4(2012): C. Sivagnanam, M.P. Kulandaivel and P. Selvaraju

Then every vertex of V − X is adjacent to all the vertices in X . Suppose

E(〈X〉) = φ . Then |X| ≤ 4 and hence G is isomorphic to Ks,4 where s =

1, 2, 3, 4. If s = 2, 3 or 4 then γ2nc(G) + κ(G) 6= 2n − 5. Hence G is isomorphic

to K1,4 . Suppose E(〈X〉) 6= φ . If any one of the vertices in X say v1 is adjacent

to all the vertices in X we have that γ2nc(G) ≤ 3 which gives n ≤ 4 which is

a contradiction. Hence every vertex in X is not adjacent to at least one vertex

in X . Hence γ2nc(G) ≤ 4. Then n ≤ 5. Since n ≤ 4 is impossible we have n = 5

and hence G is isomorphic to K1,4 .

Subcase 2.2. 〈V − X〉 = P3 ∪ K1 .

Let x1 be the isolated vertex in 〈V − X〉 and (x2, x3, x4) be a path. Then

x1 is adjacent to all the vertices in X and x2, x4 are not adjacent to at most one

vertex in X and hence {x1, x2, x4, v1} , v1 ∈ X − N(x2) is nc2d-set of G and

hence γ2nc ≤ 4. Thus n = 5. Then G is isomorphic to P5 or C4(1, 0, 0, 0) or

K3(1, 1, 0) or K4 − e(1, 0, 0, 0). If G is either K3(1, 1, 0) or K4 − e(1, 0, 0, 0) then

γ2nc(G) + κ(G) 6= 2n − 5. Hence G is P5 or C4(1, 0, 0, 0).

Subcase 2.3. 〈V − X〉 = K3 ∪ K1 .

Let x1 be the isolated vertex in 〈V − X〉 and 〈{x2, x3, x4}〉 be a complete

graph. Then x1 is adjacent to all the vertices in X and x2, x3, x4 are not adjacent

to at most two vertices in X and hence {x1, x2, x3, v1, v2} where v1, v2 ∈ X −

N(x2 ∪ x3) is a nc2d-set of G and hence n = 5 or 6. Suppose n = 5. Then G is

isomorphic to K4 − e(1, 0, 0, 0) or K4(1, 0, 0, 0) or K3(P3, P1, P1).

For these graphs γ2nc(G)+κ(G) 6= 2n−5. Suppose n = 6. Then {x1, x2, x3, v1}

or {x1, x2, x3, v2} or {x2, x3, v1, v2} is a nc2d-set of G which is a contradiction

to γ2nc = n − 1.

Subcase 2.4. 〈V − X〉 = K2 ∪ K2 .

Let x1x2 ∈ E(G) and x3x4 ∈ E(G). Then each xi , i = 1 or 2 is non adjacent

to at most one vertex in X and each xj , j = 3 or 4 is adjacent to all the vertices

in X . Then {x1, x3, x4, v1} where v1 ∈ N(x2)∩X is a nc2d-set of G and hence

n = 5. Then G is isomorphic to K2(2, 1) or K3(2, 0).

Subcase 2.5. 〈V − X〉 = K2 ∪ K2 .

Let x1x2, x3x4 ∈ E(G). Since δ(G) = n − 4 each xi is non adjacent to

at most one vertex in X . Then at most one vertex say v1 ∈ X such that

|N(v1) ∩ (V − X)| = 1. If all vi ∈ X such that |N(vi) ∩ (V − X)| ≥ 2 then

{x1, x2, x3, x4} is a nc2d-set of G and hence n = 5. For this graph γ2nc(G) +

κ(G) 6= 2n − 5. If |N(v1) ∩ (V − X)| = 1 and |N(vi) ∩ (V − X)| ≥ 2 for i 6= 2

then {x1, x2, x3, x4, v1} is a nc2d-set of G and hence n = 6. For this graph
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γ2nc(G) + κ(G) 6= 2n − 5.

Case 3. γ2nc(G) = n − 2 and κ(G) = n − 3.

Then n − 3 ≤ δ . If δ = n − 1 then G is a complete graph which is a

contradiction. If δ = n − 2 then G is isomorphic to Kn − Y where Y is any

matching in Kn . Then γ2nc(G) = 2 or 3. If γ2nc(G) = 3 then n = 5 which gives

a contradiction. If γ2nc = 2 then n = 4. Hence G is either K4 − e or C4 . For

these two graphs κ(G) = 2 6= n − 3 which is a contradiction. Hence δ = n − 3.

Let X be the vertex cut of G with |X| = n− 3 and let V −X = {x1, x2, x3} ,

X = {v1, v2, . . . , vn−3} .

Subcase 3.1. 〈V − X〉 = K3 .

Then every vertex of V − X is adjacent to all the vertices in X . Suppose

E(〈X〉) = φ . Then |X| ≤ 3. If |X| = 1 or 2 then γ2nc(G) + κ(G) 6= 2n − 5 and

hence G is isomorphic to K3,3 . If E(〈X〉) 6= φ . If any v1 ∈ X is adjacent to

all the vertices in X then γ2nc(G) ≤ 3. Thus n ≤ 5. If n = 4 then G is a star

which is a contradiction to E(〈X〉) 6= φ . Hence n = 5. For this graph γ2nc = 2

which is a contradiction. Hence there are no vertices of X of degree n− 1. Then

γ2nc(G) ≤ 4 and hence n = 6. Hence G is isomorphic to the graph K3,3 + e . For

this graph γ2nc = 3 which is a contradiction.

Subcase 3.2. 〈V − X〉 = K1 ∪ K2 .

Let x1x2 ∈ E(G). Then x3 is adjacent to all the vertices in X and x1, x2

are not adjacent to at most one vertex in X . If degx1 or degx2 is n − 2 then

{x1, x2, x3} is a nc2d-set of G and hence γ2nc ≤ 3. Then n ≤ 5. If n = 4 then G

is isomorphic to P4 or K3(1, 0, 0). But for these graphs γ2nc(G)+κ(G) 6= 2n−5.

Suppose n = 5. Let X = {v1, v2} . Suppose v1v2 ∈ E(G). If degx2 = 2 then G

is isomorphic to G1 . If degx2 = 3 then for this graph γ2nc(G) + κ(G) 6= 2n − 5.

Suppose v1 v2 6∈ E(G) Then G is isomorphic to G2 or G3 . Suppose degx1 =

deg x2 = n − 3. If N(x1) = N(x2) then there is a vertex v1 ∈ X such that

v1 is not adjacent to both x1 and x2 . Then v1 is adjacent to all the vertices

in X . If |X| ≥ 4 then {v2, v3} is a nc2d-set of G and hence n ≤ 4 which is a

contradiction. If |X| = 3 then {v1, v2, v3} is a nc2d-set of G and hence n ≤ 5

which is a contradiction.

If N(x1) 6= N(x2) then two vertices say v1 and v2 such that v1 is not adjacent

to x1 but adjacent to x2 and v2 is not adjacent to x2 but adjacent to x1 . Then

{x1, x2, x3} is a nc2d-set of G and hence n ≤ 5. Then G is isomorphic to C5

or G2 .

Case 4. γ2nc(G) = n − 3 and κ(G) = n − 2.
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Then n − 2 ≤ δ(G). If δ = n − 1 then G is a complete graph which gives

a contradiction. Hence δ(G) = n − 2. Then G is isomorphic to Kn − Y where

Y is a matching in Kn . Then γ2nc(G) ≤ 3. If γ2nc(G) = 3 then n = 6. But

γ2nc(K6 − Y ) = 2 6= n − 3 which is a contradiction. If γ2nc(G) = 2 then n = 5.

Hence G is isomorphic to K5 − Y where Y is any matching in K5 .

Case 5. γ2nc(G) = n − 4 and κ(G) = n − 1.

Then G is a complete graph on n vertices. Since γ2nc(G) = n − 4 we have

n = 6. Hence G is isomorphic to K6 . The converse is obvious.
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