n-Weak Amenability of T-Lau Product of Banach Algebras

Ali Reza Khoddami

Received 12 March 2013
Accepted 3 January 2014

Abstract

Given a morphism T from a Banach algebra B into a commutative Banach algebra A, we explain explicitly the derivations from T-Lau product $A \times_{T} B$ into its $n^{\text {th }}$-dual $\left(A \times_{T} B\right)^{(n)}$ from which we obtain general necessary and sufficient conditions for $A \times_{T} B$ to be n - weakly amenable.

Keywords: n-weak amenability, Lau product, derivation, module action
2010 Mathematics Subject Classification: 46H25, 47B47

1 Introduction

Let A and B be Banach algebras and throughout the paper let A be commutative. Suppose that $T: B \rightarrow A$ is an algebra morphism with $\|T\| \leq 1$. Then the direct product $A \times B$ equipped with the $\ell^{1}-$ norm and the algebra multiplication

$$
(a, b) \cdot(c, d)=(a c+T(d) a+T(b) c, b d), \quad(a, c \in A, b, d \in B)
$$

is a Banach algebra which is called the T-Lau product of A and B and will denote by $A \times_{T} B$. Some properties of this algebra such as, Arens regularity, amenability and weak amenability are investigated in [1]. This type of product was introduced by Lau [5] for certain class of Banach algebras and then was extended by Sangani Monfared [6] for the general case. In [5, 6] for two Banach algebras A and B and for $\theta \in \triangle(B)$ (the spectrum of B), $A \times B$, equipped with this type of product so-called " θ - Lau product" was introduced as follows and was denoted
by $A \times{ }_{\theta} B,(a, b) \cdot(c, d)=(a c+\theta(b) c+\theta(d) a, b d)$. An illuminating case which is of special interest is the case $B=\mathbb{C}$ with θ as the identity character i that we get the unitization $A^{\sharp}=A \times_{i} \mathbb{C}$ of A. If one includes the possibility that $\theta=0$ then the usual direct product of Banach algebras will obtain. Besides the works of Lau and Sangani Monfared several properties such as, character inner amenability, biprojectivity and biflatness of $A \times_{\theta} B$ are investigated in [3, 4].

The main aim of this paper is to study the n - weak amenability of $A \times_{T} B$. In this direction we shall prove that: If A is a commutative Banach algebra, B is a Banach algebra and $T: B \rightarrow A$ is a morphism with $\|T\| \leq 1$ then $A \times_{T} B$ is $(2 n+1)$ - weakly amenable if and only if both A and B are also. We shall also show that $(2 n)$ - weak amenability of $A \times_{T} B$ implies $(2 n)$ - weak amenability of A and B. Also if A and B are ($2 n$)-weakly amenable then $A \times{ }_{T} B$ is ($2 n$)-weakly amenable whenever $\bar{A}^{2}=A, \bar{B}^{2}=B$.

2 Preliminaries

A derivation from a Banach algebra A into a Banach A-module X is a bounded linear mapping $D: A \rightarrow X$ such that for $a, b \in A, D(a b)=D(a) \cdot b+a \cdot D(b)$. The set of all derivations from A into X is denoted by $Z^{1}(A, X)$. For $x \in X$ the derivation $\delta_{x}: A \rightarrow X$ defined by $\delta_{x}(a)=a \cdot x-x \cdot a(a \in A)$ is called an inner derivation. The set of all inner derivations from A into X is denoted by $N^{1}(A, X)$. The quotient $\frac{Z^{1}(A, X)}{N^{1}(A, X)}$ that will be denoted by $H^{1}(A, X)$ is called the first cohomology group of A with coefficients in X. Throughout the paper n is assumed to be a non-negative integer. For a Banach algebra A, the $n^{t h}$-dual $A^{(n)}$ of A is a Banach A-module with the module operations that are defined inductively by
$\langle m \cdot a, f\rangle=\langle m, a \cdot f\rangle,\langle a \cdot m, f\rangle=\langle m, f \cdot a\rangle,\left(m \in A^{(n)}, f \in A^{(n-1)}, a \in A^{(0)}=A\right)$.
Also A is a Banach A-module under its multiplication. It is clear that in the case where A is commutative $m \cdot a=a \cdot m,\left(a \in A, m \in A^{(n)}\right)$.
A Banach algebra A is said to be n-weakly amenable if $H^{1}\left(A, A^{(n)}\right)=0$. This notion was initiated and studied in [2]. Obviously, $1-$ weak amenability is nothing else than weak amenability.
For brevity of notation we usually identify an element of A with its canonical image in $A^{(2 n)}$. We usually apply $\langle\cdot, \cdot\rangle$ for the duality between a Banach space
and its dual and we also use the symbol "." for the various module operations linking various Banach algebras.
Let $T: B \rightarrow A$ be an algebra morphism with $\|T\| \leq 1$, and let $T^{(n)}$ be $n^{\text {th }}$-adjoint of T, where $T^{(0)}=T$. It is clear that $\left\|T^{(n)}\right\| \leq 1$ and also $T^{(2 n)}: B^{(2 n)} \rightarrow A^{(2 n)}$ is an algebra morphism extending T to $B^{(2 n)}$. To obtain the relation between n - weak amenability of $A \times_{T} B$ and those of A and B we need to characterize the derivations from $A \times_{T} B$ into $\left(A \times_{T} B\right)^{(n)}$.

3 main results

One can simply identify the underlying space of $\left(A \times_{T} B\right)^{(n)}$ with $A^{(n)} \times B^{(n)}$, equipped with l_{1} - norm when n is even and the $l_{\infty}-$ norm when n is odd. So one can simply verify that, for $a \in A, b \in B, f \in A^{(2 n+1)}, g \in B^{(2 n+1)}, F \in A^{(2 n)}$ and $G \in B^{(2 n)}$:

$$
\begin{aligned}
(a, b) \cdot(f, g) & =\left((a+T(b)) \cdot f, T^{(2 n+1)}(a \cdot f)+b \cdot g\right) \\
(f, g) \cdot(a, b) & =\left((a+T(b)) \cdot f, T^{(2 n+1)}(a \cdot f)+g \cdot b\right) \\
(a, b) \cdot(F, G) & =\left((a+T(b)) \cdot F+T^{(2 n)}(G) \cdot a, b \cdot G\right) \\
(F, G) \cdot(a, b) & =\left((a+T(b)) \cdot F+T^{(2 n)}(G) \cdot a, G \cdot b\right)
\end{aligned}
$$

We characterize the derivations from $A \times_{T} B$ into $\left(A \times_{T} B\right)^{(n)}$.
Note that the fact $m \cdot a=a \cdot m\left(a \in A, m \in A^{(n)}\right)$ are used repeatedly. The following result is devoted to the case that n is odd.

Proposition 3.1. Let A be a commutative Banach algebra, B be a Banach algebra, and let $T: B \rightarrow A$ be an algebra morphism with $\|T\| \leq 1$. A bounded linear mapping $D: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n+1)}$ is a derivation if and only if there exist derivations $d_{A}: A \rightarrow A^{(2 n+1)}$, $d_{B}: B \rightarrow B^{(2 n+1)}$ and bounded linear mappings $S: A \rightarrow B^{(2 n+1)}, R: B \rightarrow A^{(2 n+1)}$ satisfying,
(i) $D((a, b))=\left(d_{A}(a)+R(b), S(a)+d_{B}(b)\right)$,
(ii) $S(a c)=T^{(2 n+1)}\left(d_{A}(a c)\right)$,
(iii) $R(b d)=T(b) \cdot R(d)+T(d) \cdot R(b)$,
(iv) $a \cdot R(b)=d_{A}(T(b)) \cdot a$,
(v) $S(a) \cdot b=b \cdot S(a)=T^{(2 n+1)}\left(T(b) \cdot d_{A}(a)\right) \quad(a, c \in A, b, d \in B)$.

In particular, D is inner if and only if $d_{A}=0, R=0, S=0$ and d_{B} is inner.
Proof. For a bounded linear mapping $D: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n+1)}$, there exist bounded linear mappings $D_{1}: A \times_{T} B \rightarrow A^{(2 n+1)}, D_{2}: A \times_{T} B \rightarrow B^{(2 n+1)}$ such
that $D((a, b))=\left(D_{1}((a, b)), D_{2}((a, b))\right)$. Define
$d_{A}(a)=D_{1}((a, 0)), d_{B}(b)=D_{2}((0, b)), S(a)=D_{2}((a, 0))$ and $R(b)=D_{1}((0, b))$.
Let D be a derivation. So for $(a, b),(c, d) \in A \times_{T} B$ the equality,

$$
\begin{equation*}
D((a, b)(c, d))=(a, b) \cdot D((c, d))+D((a, b)) \cdot(c, d) \tag{1}
\end{equation*}
$$

is hold. The assumption $b=d=0$ in (1) implies that d_{A} is a derivation and $S(a c)=T^{(2 n+1)}\left(d_{A}(a c)\right),(a, c \in A)$. Also the assumption $a=c=0$ implies that d_{B} is a derivation and $R(b d)=T(b) \cdot R(d)+T(d) \cdot R(b),(b, d \in B)$.
On the one hand since

$$
D((T(b) a, 0))=D((a, 0)(0, b))=D((a, 0)) \cdot(0, b)+(a, 0) \cdot D((0, b))
$$

we have,

$$
\begin{gather*}
a \cdot R(b)+T(b) \cdot d_{A}(a)=d_{A}(T(b) a) \tag{2}\\
S(T(b) a)=S(a) \cdot b+T^{(2 n+1)}(R(b) \cdot a),(a \in A, b \in B) \tag{3}
\end{gather*}
$$

On the other hand since
$D((T(b) a, 0))=D((0, b)(a, 0))=D((0, b)) \cdot(a, 0)+(0, b) \cdot D((a, 0))$ we have,

$$
\begin{equation*}
S(T(b) a)=T^{(2 n+1)}(R(b) \cdot a)+b \cdot S(a), \quad(a \in A, b \in B) \tag{4}
\end{equation*}
$$

So by (3) and (4), $S(a) \cdot b=b \cdot S(a)$ and by (2)
$a \cdot R(b)+T(b) \cdot d_{A}(a)=d_{A}(T(b) a)=d_{A}(T(b)) \cdot a+T(b) \cdot d_{A}(a)$. It follows that $a \cdot R(b)=d_{A}(T(b)) \cdot a$. Also by (ii) and (4),

$$
\begin{aligned}
T^{(2 n+1)}(R(b) \cdot a)+b \cdot S(a) & =S(T(b) a) \\
& =T^{(2 n+1)}\left(d_{A}(T(b) a)\right) \\
& =T^{(2 n+1)}\left(T(b) \cdot d_{A}(a)+d_{A}(T(b)) \cdot a\right) \\
& =T^{(2 n+1)}\left(T(b) \cdot d_{A}(a)\right)+T^{(2 n+1)}\left(d_{A}(T(b)) \cdot a\right) \\
& =T^{(2 n+1)}\left(T(b) \cdot d_{A}(a)\right)+T^{(2 n+1)}(R(b) \cdot a)
\end{aligned}
$$

Hence $S(a) \cdot b=b \cdot S(a)=T^{(2 n+1)}\left(T(b) \cdot d_{A}(a)\right)$.
A straightforward calculation can be applied to show that the converse is hold.
Let D be an inner derivation. So there exists $(f, g) \in\left(A \times_{T} B\right)^{(2 n+1)}$ such that
$D=\delta_{(f, g)}$. It follows that

$$
\begin{aligned}
\left(d_{A}(a)+R(b), S(a)+d_{B}(b)\right) & =(a, b) \cdot(f, g)-(f, g) \cdot(a, b) \\
& =\left((a+T(b)) \cdot f, T^{(2 n+1)}(f \cdot a)+b \cdot g\right) \\
& -\left((a+T(b)) \cdot f, T^{(2 n+1)}(f \cdot a)+g \cdot b\right) \\
& =(0, b \cdot g-g \cdot b)=\left(0, \delta_{g}(b)\right) .
\end{aligned}
$$

It follows that $d_{A}=0, S=0, R=0$ and $d_{B}=\delta_{g}$. Obviously the converse is hold, indeed if $d_{A}=0, S=0, R=0$ and $d_{B}=\delta_{g}$ then $D=\delta_{(0, g)}$.

For the case that n is even we have the next result which needs a similar proof as Proposition 3.1.

Proposition 3.2. Let A be a commutative Banach algebra, B be a Banach algebra, and let $T: B \rightarrow A$ be an algebra morphism with $\|T\| \leq 1$. A bounded linear mapping
$D: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n)}$ is a derivation if and only if there exist derivation $d_{B}: B \rightarrow B^{(2 n)}$ and bounded linear mappings $d_{A}: A \rightarrow A^{(2 n)}, S: A \rightarrow B^{(2 n)}$ and $R: B \rightarrow A^{(2 n)}$ satisfying,
(i) $D((a, b))=\left(d_{A}(a)+R(b), S(a)+d_{B}(b)\right)$,
(ii) $d_{A}(a c)=a \cdot d_{A}(c)+d_{A}(a) \cdot c+T^{(2 n)}(s(c)) \cdot a+T^{(2 n)}(s(a)) \cdot c$,
(iii) $S(a c)=0$,
(iv) $d_{A}(T(b)) \cdot a+T^{(2 n)}(S(T(b))) \cdot a=R(b) \cdot a+T^{(2 n)}\left(d_{B}(b)\right) \cdot a$,
(v) $R(b d)=T(b) \cdot R(d)+T(d) \cdot R(b)$,
(vi) $S(a) \cdot b=b \cdot S(a)=0, \quad(a, c \in A, b, d \in B)$.

In particular, D is inner if and only if $d_{A}=0, R=0, S=0$ and d_{B} is inner.
Theorem 3.3. Let A be a commutative Banach algebra, B be a Banach algebra, and let $T: B \rightarrow A$ be an algebra morphism with $\|T\| \leq 1$. Then $A \times_{T} B$ is $(2 n+1)$-weakly amenable if and only if both A and B are also.

Proof. Let $A \times_{T} B$ be $(2 n+1)$ - weakly amenable and let $d_{A}: A \rightarrow A^{(2 n+1)}$ and $d_{B}: B \rightarrow B^{(2 n+1)}$ be derivations. Define $D: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n+1)}$ by $D=\left(d_{A}+R, S+d_{B}\right)$ where, $R: B \rightarrow A^{(2 n+1)}$ and $S: A \rightarrow B^{(2 n+1)}$ are defined by $R(b)=d_{A}(T(b))$ and $S(a)=T^{(2 n+1)}\left(d_{A}(a)\right)$ respectively. Since A is commutative a straightforward calculation shows that the parts $(i),(i i),(i i i),(i v)$ in Proposition
3.1 are hold. We show that part (v) is also hold. Let $a \in A, b \in B, G \in B^{(2 n)}$.

$$
\begin{aligned}
\langle S(a) \cdot b, G\rangle & =\langle S(a), b \cdot G\rangle=\left\langle T^{(2 n+1)}\left(d_{A}(a)\right), b \cdot G\right\rangle \\
& =\left\langle d_{A}(a), T^{(2 n)}(b \cdot G)\right\rangle=\left\langle d_{A}(a), T^{(2 n)}(b) T^{(2 n)}(G)\right\rangle \\
& =\left\langle d_{A}(a), T(b) \cdot T^{(2 n)}(G)\right\rangle=\left\langle T(b) \cdot d_{A}(a), T^{(2 n)}(G)\right\rangle \\
& =\left\langle T^{(2 n+1)}\left(T(b) \cdot d_{A}(a)\right), G\right\rangle
\end{aligned}
$$

It follows that $S(a) \cdot b=T^{(2 n+1)}\left(T(b) \cdot d_{A}(a)\right)$. A similar calculation can be applied to show that $b \cdot S(a)=T^{(2 n+1)}\left(T(b) \cdot d_{A}(a)\right)$. Hence D is a derivation. Since $A \times_{T} B$ is $(2 n+1)$ - weakly amenable, there exists $(f, g) \in\left(A \times_{T} B\right)^{(2 n+1)}$ such that $D=\delta_{(f, g)}$.

$$
\begin{aligned}
D((a, b)) & =\left(d_{A}(a)+R(b), S(a)+d_{B}(b)\right)=(a, b) \cdot(f, g)-(f, g) \cdot(a, b) \\
& =\left((a+T(b)) \cdot f, T^{(2 n+1)}(a \cdot f)+b \cdot g\right) \\
& -\left((a+T(b)) \cdot f, T^{(2 n+1)}(a \cdot f)+g \cdot b\right) \\
& =(0, b \cdot g-g \cdot b)
\end{aligned}
$$

It follows that $d_{A}=0$ and $d_{B}=\delta_{g}$. So A and B are $(2 n+1)$ - weakly amenable. For the converse let A and B be $(2 n+1)$ - weakly amenable.
So by [[2], Proposition, 1.2], A and B are weakly amenable and it implies that $\bar{A}^{2}=A$ and $\bar{B}^{2}=B$.
Let $D: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n+1)}$ be a derivation. So by Proposition 3.1, there exist derivations $d_{A}: A \rightarrow A^{(2 n+1)}$ and $d_{B}: B \rightarrow B^{(2 n+1)}$ and also bounded linear mappings
$S: A \rightarrow B^{(2 n+1)}$ and $R: B \rightarrow A^{(2 n+1)}$ such that $D=\left(d_{A}+R, S+d_{B}\right)$. Since A is $(2 n+1)$-weakly amenable and commutative, $d_{A}=0$. Also $d_{B}=\delta_{g}$, for some $g \in B^{(2 n+1)}$. We show that $S=0$ and $T=0$. Let $a, c \in A$ then by part (ii) of Proposition 3.1,
$S(a c)=T^{(2 n+1)}\left(d_{A}(a c)\right)=0$. Since S is bounded and $\bar{A}^{2}=A$, it follows that $S=0$. On the other hand by part $(i v)$ of Proposition 3.1, $a \cdot R(b)=d_{A}(T(b)) \cdot a=$ $0, a \in A, b \in B$. So the equality $R(b d)=T(b) \cdot R(d)+T(d) \cdot R(b)$ implies that $R(b d)=0$. Since $\overline{B^{2}}=B$ and R is bounded, $R=0$. So $D=\left(0, \delta_{g}\right)=\delta_{(0, g)}$.

In the next result we show that under some mild conditions ($2 n$) - weak amenability of $A \times_{T} B$ is equivalent to $2 n$ - weak amenability of A and B. This condition shows that weak amenability of A and B play a pivotal role for $(2 n+1)$-weak amenability $A \times_{T} B$.

Theorem 3.4. Let A be a commutative Banach algebra, B be a Banach algebra, and let $T: B \rightarrow A$ be an algebra morphism with $\|T\| \leq 1$. Then $(2 n)-$ weak amenability of $A \times_{T} B$ implies (2n)-weak amenability of both A and B. The converse is hold whenever $\bar{A}^{2}=A, \bar{B}^{2}=B$.

Proof. Let $A \times_{T} B$ be (2n)-weakly amenable and let $d_{A}: A \rightarrow A^{(2 n)}$ and $d_{B}: B \rightarrow B^{(2 n)}$ be derivations. Define $D: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n)}$
by $D=\left(d_{A}+R, d_{B}\right)$, where $R(b)=d_{A}(T(b))-T^{(2 n)}\left(d_{B}(b)\right), b \in B$. Then for each $b, d \in B$,

$$
\begin{aligned}
R(b d) & =d_{A}(T(b d))-T^{(2 n)}\left(d_{B}(b d)\right)=d_{A}(T(b) T(d))-T^{(2 n)}\left(d_{B}(b) \cdot d+b \cdot d_{B}(d)\right) \\
& =T(b) \cdot d_{A}(T(d))+d_{A}(T(b)) \cdot T(d)-T^{(2 n)}\left(d_{B}(b) \cdot d\right)-T^{(2 n)}\left(b \cdot d_{B}(d)\right) \\
& =T(b) \cdot d_{A}(T(d))+d_{A}(T(b)) \cdot T(d)-T^{(2 n)}\left(d_{B}(b)\right) T^{(2 n)}(d) \\
& -T^{(2 n)}(b) T^{(2 n)}\left(d_{B}(d)\right) \\
& =T(b) \cdot d_{A}(T(d))+d_{A}(T(b)) \cdot T(d)-T^{(2 n)}\left(d_{B}(b)\right) \cdot T(d) \\
& -T(b) \cdot T^{(2 n)}\left(d_{B}(d)\right) \\
& =T(b) \cdot\left(d_{A}(T(d))-T^{(2 n)}\left(d_{B}(d)\right)\right) \\
& +T(d) \cdot\left(d_{A}(T(b))-T^{(2 n)}\left(d_{B}(b)\right)\right) \\
& =T(b) \cdot R(d)+T(d) \cdot R(b) .
\end{aligned}
$$

Also $d_{A}(T(b)) \cdot a=R(b) \cdot a+T^{(2 n)}\left(d_{B}(b)\right) \cdot a \quad(a \in A, b \in B)$, and so by Proposition $3.2 D$ is a derivation. Since $A \times_{T} B$ is $(2 n)$-weakly amenable, there exists $(F, G) \in\left(A \times_{T} B\right)^{(2 n)}$ such that $D=\delta_{(F, G)}$. Hence

$$
\begin{aligned}
D((a, b)) & =\left(d_{A}(a)+R(b), d_{B}(b)\right)=(a, b) \cdot(F, G)-(F, G) \cdot(a, b) \\
& =\left((a+T(b)) \cdot F+T^{(2 n)}(G) \cdot a, b \cdot G\right) \\
& -\left((a+T(b)) \cdot F+T^{(2 n)}(G) \cdot a, G \cdot b\right) \\
& =(0, b \cdot G-G \cdot b)=\left(0, \delta_{G}(b)\right) \quad(a \in A, b \in B) .
\end{aligned}
$$

It follows that $d_{A}=0$ and $d_{B}=\delta_{G}$. So A and B are $(2 n)$ - weakly amenable. For the converse let A and B be $(2 n)$ - weakly amenable and let $D: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n)}$ be a derivation. By Proposition 3.2 there exist derivation d_{B} and bounded linear mappings d_{A}, R, S with their described properties mentioned in Proposition 3.2 such that
$D=\left(d_{A}+R, S+d_{B}\right)$. Since $S(a c)=0(a, c \in A)$, the equality $\bar{A}^{2}=A$ implies that, $S=0$. By part (ii) of Proposition 3.2, since $S=0$ so d_{A} is a derivation.

As A is commutative and $(2 n)$-weakly amenable, $d_{A}=0$. On the other hand since d_{B} is a derivation, there exists $G \in B^{(2 n)}$ such that $d_{B}=\delta_{G}$. By part (iv) of Proposition 3.2 we have $R(b) \cdot a+T^{(2 n)}\left(d_{B}(b)\right) \cdot a=0$. It follows that

$$
\begin{aligned}
0 & =R(b) \cdot a+T^{(2 n)}(b \cdot G-G \cdot b) \cdot a \\
& =R(b) \cdot a+\left(T^{(2 n)}(b) T^{(2 n)}(G)-T^{(2 n)}(G) T^{(2 n)}(b)\right) \cdot a \\
& =R(b) \cdot a+\left(T(b) T^{(2 n)}(G)-T(b) T^{(2 n)}(G)\right) \cdot a \\
& =R(b) \cdot a .
\end{aligned}
$$

Following part (v) of Proposition 3.2,

$$
R(b d)=T(b) \cdot R(d)+T(d) \cdot R(b)=0(b, d \in B)
$$

So the assumption, $\overline{B^{2}}=B$ implies that $R=0$. So $D=\delta_{(0, G)}$. Hence $A \times_{T} B$ is $(2 n)$ - weakly amenable.

Recall that an arbitrary Banach algebra A is permanently weakly amenable if A is n-weakly amenable for each $n \in \mathbb{N}$.

Corollary 3.5. Let A be a commutative Banach algebra, B be a Banach algebra, and let $T: B \rightarrow A$ be an algebra morphism with $\|T\| \leq 1$. Also Let $\bar{A}^{2}=A, \overline{B^{2}}=$ B, then $A \times_{T} B$ is permanently weakly amenable if and only if both A and B are permanently weakly amenable.

Acknowledgements: The author would like to thank the referee for careful reading of the paper and giving some useful suggestions.

References

[1] S.J. Bhatt and P.A. Dabhi, Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc., (2012), 1-12.
[2] H.G. Dales, F. Ghahramani and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math., 128(1)(1998), 19-54.
[3] H.R. Ebrahimi Vishki and A.R. Khoddami, Character inner amenability of certain Banach algebras, Colloq. Math., 122(2011), 225-232.
[4] A.R. Khoddami and H.R. Ebrahimi Vishki, Biflatness and biprojectivity of certain products of Banach algebras, Bull. Iran. Math. Soc., 39(3)(2013), 559-568.
[5] A.T.-M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math., 118(1983), 161-175.
[6] M. Sangani Monfared, On certain products of Banach algebras with application to harmonic analysis, Studia Math., 178(3)(2007), 277-294.

Ali Reza Khoddami

Department of Pure Mathematics
Shahrood University of Technology
P.O. BOX 3619995161-316, Shahrood, Iran.

Email: khoddami.alireza@shahroodut.ac.ir

