VOLUME 5(2013), 57-65

http://www.math.sc.chula.ac.th/cjm

n-Weak Amenability of T-Lau Product of Banach Algebras

Ali Reza Khoddami

Received 12 March 2013 Accepted 3 January 2014

Abstract: Given a morphism T from a Banach algebra B into a commutative Banach algebra A, we explain explicitly the derivations from T-Lau product $A \times_T B$ into its n^{th} -dual $(A \times_T B)^{(n)}$ from which we obtain general necessary and sufficient conditions for $A \times_T B$ to be n-weakly amenable.

Keywords: n-weak amenability, Lau product, derivation, module action

2010 Mathematics Subject Classification: 46H25, 47B47

1 Introduction

Let A and B be Banach algebras and throughout the paper let A be commutative. Suppose that $T: B \to A$ is an algebra morphism with $||T|| \le 1$. Then the direct product $A \times B$ equipped with the ℓ^1 -norm and the algebra multiplication

$$(a,b) \cdot (c,d) = (ac + T(d)a + T(b)c, bd), (a, c \in A, b, d \in B),$$

is a Banach algebra which is called the T-Lau product of A and B and will denote by $A \times_T B$. Some properties of this algebra such as, Arens regularity, amenability and weak amenability are investigated in [1]. This type of product was introduced by Lau [5] for certain class of Banach algebras and then was extended by Sangani Monfared [6] for the general case. In [5, 6] for two Banach algebras A and B and for $\theta \in \Delta(B)$ (the spectrum of B), $A \times B$, equipped with this type of product so-called " θ -Lau product" was introduced as follows and was denoted

by $A \times_{\theta} B$, $(a, b) \cdot (c, d) = (ac + \theta(b)c + \theta(d)a, bd)$. An illuminating case which is of special interest is the case $B = \mathbb{C}$ with θ as the identity character i that we get the unitization $A^{\sharp} = A \times_{i} \mathbb{C}$ of A. If one includes the possibility that $\theta = 0$ then the usual direct product of Banach algebras will obtain. Besides the works of Lau and Sangani Monfared several properties such as, character inner amenability, biprojectivity and biflatness of $A \times_{\theta} B$ are investigated in [3, 4].

The main aim of this paper is to study the n- weak amenability of $A\times_T B$. In this direction we shall prove that: If A is a commutative Banach algebra, B is a Banach algebra and $T:B\to A$ is a morphism with $\|T\|\leq 1$ then $A\times_T B$ is (2n+1)- weakly amenable if and only if both A and B are also. We shall also show that (2n)- weak amenability of $A\times_T B$ implies (2n)- weak amenability of A and B. Also if A and B are (2n)- weakly amenable then $A\times_T B$ is (2n)- weakly amenable whenever $\bar{A}^2=A, \bar{B}^2=B$.

2 Preliminaries

A derivation from a Banach algebra A into a Banach A-module X is a bounded linear mapping $D:A\to X$ such that for $a,b\in A,D(ab)=D(a)\cdot b+a\cdot D(b)$. The set of all derivations from A into X is denoted by $Z^1(A,X)$. For $x\in X$ the derivation $\delta_x:A\to X$ defined by $\delta_x(a)=a\cdot x-x\cdot a(a\in A)$ is called an inner derivation. The set of all inner derivations from A into X is denoted by $N^1(A,X)$. The quotient $\frac{Z^1(A,X)}{N^1(A,X)}$ that will be denoted by $H^1(A,X)$ is called the first cohomology group of A with coefficients in X. Throughout the paper n is assumed to be a non-negative integer. For a Banach algebra A, the n^{th} -dual $A^{(n)}$ of A is a Banach A-module with the module operations that are defined inductively by

$$\langle m \cdot a, f \rangle = \langle m, a \cdot f \rangle, \ \langle a \cdot m, f \rangle = \langle m, f \cdot a \rangle, \ (m \in A^{(n)}, \ f \in A^{(n-1)}, \ a \in A^{(0)} = A).$$

Also A is a Banach A-module under its multiplication. It is clear that in the case where A is commutative $m \cdot a = a \cdot m$, $(a \in A, m \in A^{(n)})$.

A Banach algebra A is said to be n-weakly amenable if $H^1(A, A^{(n)}) = 0$. This notion was initiated and studied in [2]. Obviously, 1-weak amenability is nothing else than weak amenability.

For brevity of notation we usually identify an element of A with its canonical image in $A^{(2n)}$. We usually apply $\langle \cdot, \cdot \rangle$ for the duality between a Banach space

and its dual and we also use the symbol " \cdot " for the various module operations linking various Banach algebras.

Let $T: B \to A$ be an algebra morphism with $||T|| \le 1$, and let $T^{(n)}$ be n^{th} -adjoint of T, where $T^{(0)} = T$. It is clear that $||T^{(n)}|| \le 1$ and also $T^{(2n)}: B^{(2n)} \to A^{(2n)}$ is an algebra morphism extending T to $B^{(2n)}$. To obtain the relation between n-weak amenability of $A \times_T B$ and those of A and B we need to characterize the derivations from $A \times_T B$ into $(A \times_T B)^{(n)}$.

3 main results

One can simply identify the underlying space of $(A \times_T B)^{(n)}$ with $A^{(n)} \times B^{(n)}$, equipped with l_1 -norm when n is even and the l_{∞} -norm when n is odd. So one can simply verify that, for $a \in A, b \in B$, $f \in A^{(2n+1)}$, $g \in B^{(2n+1)}$, $F \in A^{(2n)}$ and $G \in B^{(2n)}$:

$$(a,b) \cdot (f,g) = ((a+T(b)) \cdot f, \ T^{(2n+1)}(a \cdot f) + b \cdot g),$$

$$(f,g) \cdot (a,b) = ((a+T(b)) \cdot f, \ T^{(2n+1)}(a \cdot f) + g \cdot b),$$

$$(a,b) \cdot (F,G) = ((a+T(b)) \cdot F + T^{(2n)}(G) \cdot a, \ b \cdot G),$$

$$(F,G) \cdot (a,b) = ((a+T(b)) \cdot F + T^{(2n)}(G) \cdot a, \ G \cdot b).$$

We characterize the derivations from $A \times_T B$ into $(A \times_T B)^{(n)}$.

Note that the fact $m \cdot a = a \cdot m$ $(a \in A, m \in A^{(n)})$ are used repeatedly. The following result is devoted to the case that n is odd.

Proposition 3.1. Let A be a commutative Banach algebra, B be a Banach algebra, and let $T: B \to A$ be an algebra morphism with $||T|| \le 1$. A bounded linear mapping $D: A \times_T B \to (A \times_T B)^{(2n+1)}$ is a derivation if and only if there exist derivations $d_A: A \to A^{(2n+1)}$, $d_B: B \to B^{(2n+1)}$ and bounded linear mappings $S: A \to B^{(2n+1)}$, $R: B \to A^{(2n+1)}$ satisfying,

- (i) $D((a,b)) = (d_A(a) + R(b), S(a) + d_B(b)),$
- (ii) $S(ac) = T^{(2n+1)}(d_A(ac)),$
- $(iii)R(bd) = T(b) \cdot R(d) + T(d) \cdot R(b)$,
- (iv) $a \cdot R(b) = d_A(T(b)) \cdot a$,
- (v) $S(a) \cdot b = b \cdot S(a) = T^{(2n+1)}(T(b) \cdot d_A(a)) \quad (a, c \in A, b, d \in B).$

In particular, D is inner if and only if $d_A = 0$, R = 0, S = 0 and d_B is inner.

Proof. For a bounded linear mapping $D: A \times_T B \to (A \times_T B)^{(2n+1)}$, there exist bounded linear mappings $D_1: A \times_T B \to A^{(2n+1)}$, $D_2: A \times_T B \to B^{(2n+1)}$ such

that $D((a,b)) = (D_1((a,b)), D_2((a,b)))$. Define $d_A(a) = D_1((a,0)), d_B(b) = D_2((0,b)), S(a) = D_2((a,0))$ and $R(b) = D_1((0,b))$. Let D be a derivation. So for $(a,b), (c,d) \in A \times_T B$ the equality,

$$D((a,b)(c,d)) = (a,b) \cdot D((c,d)) + D((a,b)) \cdot (c,d), \tag{1}$$

is hold. The assumption b=d=0 in (1) implies that d_A is a derivation and $S(ac)=T^{(2n+1)}(d_A(ac)), \ (a,c\in A)$. Also the assumption a=c=0 implies that d_B is a derivation and $R(bd)=T(b)\cdot R(d)+T(d)\cdot R(b), \ (b,d\in B)$. On the one hand since

$$D((T(b)a, 0)) = D((a, 0)(0, b)) = D((a, 0)) \cdot (0, b) + (a, 0) \cdot D((0, b))$$

we have,

$$a \cdot R(b) + T(b) \cdot d_A(a) = d_A(T(b)a) \tag{2}$$

$$S(T(b)a) = S(a) \cdot b + T^{(2n+1)}(R(b) \cdot a), \ (a \in A, b \in B).$$
 (3)

On the other hand since

$$D((T(b)a,0)) = D((0,b)(a,0)) = D((0,b)) \cdot (a,0) + (0,b) \cdot D((a,0))$$
 we have,

$$S(T(b)a) = T^{(2n+1)}(R(b) \cdot a) + b \cdot S(a), \ (a \in A, b \in B).$$
 (4)

So by (3) and (4), $S(a) \cdot b = b \cdot S(a)$ and by (2) $a \cdot R(b) + T(b) \cdot d_A(a) = d_A(T(b)a) = d_A(T(b)) \cdot a + T(b) \cdot d_A(a)$. It follows that $a \cdot R(b) = d_A(T(b)) \cdot a$. Also by (ii) and (4),

$$\begin{split} T^{(2n+1)}(R(b) \cdot a) + b \cdot S(a) &= S(T(b)a) \\ &= T^{(2n+1)}(d_A(T(b)a)) \\ &= T^{(2n+1)}(T(b) \cdot d_A(a) + d_A(T(b)) \cdot a) \\ &= T^{(2n+1)}(T(b) \cdot d_A(a)) + T^{(2n+1)}(d_A(T(b)) \cdot a) \\ &= T^{(2n+1)}(T(b) \cdot d_A(a)) + T^{(2n+1)}(R(b) \cdot a). \end{split}$$

Hence $S(a) \cdot b = b \cdot S(a) = T^{(2n+1)}(T(b) \cdot d_A(a))$.

A straightforward calculation can be applied to show that the converse is hold. Let D be an inner derivation. So there exists $(f, g) \in (A \times_T B)^{(2n+1)}$ such that $D = \delta_{(f,q)}$. It follows that

$$(d_A(a) + R(b), S(a) + d_B(b)) = (a, b) \cdot (f, g) - (f, g) \cdot (a, b)$$

$$= ((a + T(b)) \cdot f, T^{(2n+1)}(f \cdot a) + b \cdot g)$$

$$- ((a + T(b)) \cdot f, T^{(2n+1)}(f \cdot a) + g \cdot b)$$

$$= (0, b \cdot g - g \cdot b) = (0, \delta_g(b)).$$

It follows that $d_A = 0$, S = 0, R = 0 and $d_B = \delta_g$. Obviously the converse is hold, indeed if $d_A = 0$, S = 0, R = 0 and $d_B = \delta_g$ then $D = \delta_{(0,g)}$.

For the case that n is even we have the next result which needs a similar proof as Proposition 3.1.

Proposition 3.2. Let A be a commutative Banach algebra, B be a Banach algebra, and let $T: B \to A$ be an algebra morphism with $||T|| \le 1$. A bounded linear mapping

 $D: A \times_T B \to (A \times_T B)^{(2n)}$ is a derivation if and only if there exist derivation $d_B: B \to B^{(2n)}$ and bounded linear mappings $d_A: A \to A^{(2n)}, S: A \to B^{(2n)}$ and $R: B \to A^{(2n)}$ satisfying,

- (i) $D((a,b)) = (d_A(a) + R(b), S(a) + d_B(b)),$
- (ii) $d_A(ac) = a \cdot d_A(c) + d_A(a) \cdot c + T^{(2n)}(s(c)) \cdot a + T^{(2n)}(s(a)) \cdot c$,
- (iii) S(ac) = 0,
- (iv) $d_A(T(b)) \cdot a + T^{(2n)}(S(T(b))) \cdot a = R(b) \cdot a + T^{(2n)}(d_B(b)) \cdot a$,
- (v) $R(bd) = T(b) \cdot R(d) + T(d) \cdot R(b)$,
- (vi) $S(a) \cdot b = b \cdot S(a) = 0$, $(a, c \in A, b, d \in B)$.

In particular, D is inner if and only if $d_A = 0$, R = 0, S = 0 and d_B is inner.

Theorem 3.3. Let A be a commutative Banach algebra, B be a Banach algebra, and let $T: B \to A$ be an algebra morphism with $||T|| \le 1$. Then $A \times_T B$ is (2n+1)-weakly amenable if and only if both A and B are also.

Proof. Let $A \times_T B$ be (2n+1)—weakly amenable and let $d_A : A \to A^{(2n+1)}$ and $d_B : B \to B^{(2n+1)}$ be derivations. Define $D : A \times_T B \to (A \times_T B)^{(2n+1)}$ by $D = (d_A + R, S + d_B)$ where, $R : B \to A^{(2n+1)}$ and $S : A \to B^{(2n+1)}$ are defined by $R(b) = d_A(T(b))$ and $S(a) = T^{(2n+1)}(d_A(a))$ respectively. Since A is commutative a straightforward calculation shows that the parts (i), (ii), (iii), (iv) in Proposition

3.1 are hold. We show that part (v) is also hold. Let $a \in A, b \in B, G \in B^{(2n)}$.

$$\begin{split} \langle S(a) \cdot b, G \rangle &= \langle S(a), b \cdot G \rangle = \langle T^{(2n+1)}(d_A(a)), b \cdot G \rangle \\ &= \langle d_A(a), T^{(2n)}(b \cdot G) \rangle = \langle d_A(a), T^{(2n)}(b) T^{(2n)}(G) \rangle \\ &= \langle d_A(a), T(b) \cdot T^{(2n)}(G) \rangle = \langle T(b) \cdot d_A(a), T^{(2n)}(G) \rangle \\ &= \langle T^{(2n+1)}(T(b) \cdot d_A(a)), G \rangle. \end{split}$$

It follows that $S(a) \cdot b = T^{(2n+1)}(T(b) \cdot d_A(a))$. A similar calculation can be applied to show that $b \cdot S(a) = T^{(2n+1)}(T(b) \cdot d_A(a))$. Hence D is a derivation. Since $A \times_T B$ is (2n+1)—weakly amenable, there exists $(f,g) \in (A \times_T B)^{(2n+1)}$ such that $D = \delta_{(f,g)}$.

$$D((a,b)) = (d_A(a) + R(b), S(a) + d_B(b)) = (a,b) \cdot (f,g) - (f,g) \cdot (a,b)$$

$$= ((a+T(b)) \cdot f, T^{(2n+1)}(a \cdot f) + b \cdot g)$$

$$- ((a+T(b)) \cdot f, T^{(2n+1)}(a \cdot f) + g \cdot b)$$

$$= (0,b \cdot g - g \cdot b).$$

It follows that $d_A = 0$ and $d_B = \delta_g$. So A and B are (2n+1)—weakly amenable. For the converse let A and B be (2n+1)—weakly amenable.

So by [[2], Proposition, 1.2], A and B are weakly amenable and it implies that $\bar{A}^2=A$ and $\bar{B}^2=B$.

Let $D: A \times_T B \to (A \times_T B)^{(2n+1)}$ be a derivation. So by Proposition 3.1, there exist derivations $d_A: A \to A^{(2n+1)}$ and $d_B: B \to B^{(2n+1)}$ and also bounded linear mappings

 $S: A \to B^{(2n+1)}$ and $R: B \to A^{(2n+1)}$ such that $D = (d_A + R, S + d_B)$. Since A is (2n+1)—weakly amenable and commutative, $d_A = 0$. Also $d_B = \delta_g$, for some $g \in B^{(2n+1)}$. We show that S = 0 and T = 0. Let $a, c \in A$ then by part (ii) of Proposition 3.1,

 $S(ac) = T^{(2n+1)}(d_A(ac)) = 0$. Since S is bounded and $\bar{A}^2 = A$, it follows that S = 0. On the other hand by part (iv) of Proposition 3.1, $a \cdot R(b) = d_A(T(b)) \cdot a = 0$, $a \in A, b \in B$. So the equality $R(bd) = T(b) \cdot R(d) + T(d) \cdot R(b)$ implies that R(bd) = 0. Since $\bar{B}^2 = B$ and R is bounded, R = 0. So $D = (0, \delta_g) = \delta_{(0,g)}$. \square

In the next result we show that under some mild conditions (2n)—weak amenability of $A \times_T B$ is equivalent to 2n—weak amenability of A and B. This condition shows that weak amenability of A and B play a pivotal role for (2n+1)—weak amenability $A \times_T B$.

Theorem 3.4. Let A be a commutative Banach algebra, B be a Banach algebra, and let $T: B \to A$ be an algebra morphism with $||T|| \le 1$. Then (2n)-weak amenability of $A \times_T B$ implies (2n)-weak amenability of both A and B. The converse is hold whenever $\bar{A}^2 = A$, $\bar{B}^2 = B$.

Proof. Let $A \times_T B$ be (2n)-weakly amenable and let $d_A : A \to A^{(2n)}$ and $d_B : B \to B^{(2n)}$ be derivations. Define $D : A \times_T B \to (A \times_T B)^{(2n)}$ by $D = (d_A + R, d_B)$, where $R(b) = d_A(T(b)) - T^{(2n)}(d_B(b))$, $b \in B$. Then for each $b, d \in B$,

$$\begin{split} R(bd) &= d_A(T(bd)) - T^{(2n)}(d_B(bd)) = d_A(T(b)T(d)) - T^{(2n)}(d_B(b) \cdot d + b \cdot d_B(d)) \\ &= T(b) \cdot d_A(T(d)) + d_A(T(b)) \cdot T(d) - T^{(2n)}(d_B(b) \cdot d) - T^{(2n)}(b \cdot d_B(d)) \\ &= T(b) \cdot d_A(T(d)) + d_A(T(b)) \cdot T(d) - T^{(2n)}(d_B(b)) T^{(2n)}(d) \\ &- T^{(2n)}(b) T^{(2n)}(d_B(d)) \\ &= T(b) \cdot d_A(T(d)) + d_A(T(b)) \cdot T(d) - T^{(2n)}(d_B(b)) \cdot T(d) \\ &- T(b) \cdot T^{(2n)}(d_B(d)) \\ &= T(b) \cdot (d_A(T(d)) - T^{(2n)}(d_B(d))) \\ &+ T(d) \cdot (d_A(T(b)) - T^{(2n)}(d_B(b))) \\ &= T(b) \cdot R(d) + T(d) \cdot R(b). \end{split}$$

Also $d_A(T(b)) \cdot a = R(b) \cdot a + T^{(2n)}(d_B(b)) \cdot a$ $(a \in A, b \in B)$, and so by Proposition 3.2 D is a derivation. Since $A \times_T B$ is (2n)-weakly amenable, there exists $(F,G) \in (A \times_T B)^{(2n)}$ such that $D = \delta_{(F,G)}$. Hence

$$D((a,b)) = (d_A(a) + R(b), d_B(b)) = (a,b) \cdot (F,G) - (F,G) \cdot (a,b)$$

$$= ((a+T(b)) \cdot F + T^{(2n)}(G) \cdot a, b \cdot G)$$

$$- ((a+T(b)) \cdot F + T^{(2n)}(G) \cdot a, G \cdot b)$$

$$= (0,b \cdot G - G \cdot b) = (0,\delta_G(b)) \quad (a \in A, b \in B).$$

It follows that $d_A=0$ and $d_B=\delta_G$. So A and B are (2n)—weakly amenable. For the converse let A and B be (2n)—weakly amenable and let

 $D: A \times_T B \to (A \times_T B)^{(2n)}$ be a derivation. By Proposition 3.2 there exist derivation d_B and bounded linear mappings d_A, R, S with their described properties mentioned in Proposition 3.2 such that

 $D = (d_A + R, S + d_B)$. Since S(ac) = 0 $(a, c \in A)$, the equality $\bar{A}^2 = A$ implies that, S = 0. By part (ii) of Proposition 3.2, since S = 0 so d_A is a derivation.

As A is commutative and (2n)-weakly amenable, $d_A = 0$. On the other hand since d_B is a derivation, there exists $G \in B^{(2n)}$ such that $d_B = \delta_G$. By part (iv) of Proposition 3.2 we have $R(b) \cdot a + T^{(2n)}(d_B(b)) \cdot a = 0$. It follows that

$$\begin{split} 0 &= R(b) \cdot a + T^{(2n)}(b \cdot G - G \cdot b) \cdot a \\ &= R(b) \cdot a + (T^{(2n)}(b)T^{(2n)}(G) - T^{(2n)}(G)T^{(2n)}(b)) \cdot a \\ &= R(b) \cdot a + (T(b)T^{(2n)}(G) - T(b)T^{(2n)}(G)) \cdot a \\ &= R(b) \cdot a. \end{split}$$

Following part (v) of Proposition 3.2,

$$R(bd) = T(b) \cdot R(d) + T(d) \cdot R(b) = 0 \ (b, d \in B).$$

So the assumption, $\bar{B^2}=B$ implies that R=0. So $D=\delta_{(0,G)}$. Hence $A\times_T B$ is (2n)—weakly amenable.

Recall that an arbitrary Banach algebra A is permanently weakly amenable if A is n—weakly amenable for each $n \in \mathbb{N}$.

Corollary 3.5. Let A be a commutative Banach algebra, B be a Banach algebra, and let $T: B \to A$ be an algebra morphism with $||T|| \le 1$. Also Let $\bar{A}^2 = A, \bar{B}^2 = B$, then $A \times_T B$ is permanently weakly amenable if and only if both A and B are permanently weakly amenable.

Acknowledgements: The author would like to thank the referee for careful reading of the paper and giving some useful suggestions.

References

- [1] S.J. Bhatt and P.A. Dabhi, Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism, *Bull. Aust. Math. Soc.*, (2012), 1–12.
- [2] H.G. Dales, F. Ghahramani and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math., 128(1)(1998), 19–54.
- [3] H.R. Ebrahimi Vishki and A.R. Khoddami, Character inner amenability of certain Banach algebras, *Collog. Math.*, **122**(2011), 225–232.

- [4] A.R. Khoddami and H.R. Ebrahimi Vishki, Biflatness and biprojectivity of certain products of Banach algebras, *Bull. Iran. Math. Soc.*, **39**(3)(2013), 559–568.
- [5] A.T.-M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, *Fund. Math.*, **118**(1983), 161–175.
- [6] M. Sangani Monfared, On certain products of Banach algebras with application to harmonic analysis, *Studia Math.*, **178**(3)(2007), 277–294.

Ali Reza Khoddami Department of Pure Mathematics Shahrood University of Technology P.O. BOX 3619995161-316, Shahrood, Iran.

Email: khoddami.alireza@shahroodut.ac.ir