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Abstract: A graph G is endo-regular (endo-orthodox, endo-completely-regular)

if the monoid of all endomorphisms on G is regular (orthodox, completely regular

respectively). In this paper, we characterize endo-regular (endo-orthodox, endo-

completely-regular) of generalized wheel graphs Wn(m). For each m ≥ 2, we

found that the Wn(m) is endo-regular (endo-orthodox resp.) if and only if n is

odd and m = 2 and Wn(m) is endo-completely-regular if and only if it is W3(2).
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1 Introduction and Preliminaries

In [3], W. Li characterized regular endomorphisms on arbitrary graphs. The char-

acterizations of endo-regular and endo-orthodox connected bipartite graphs were

explicitly found in [10] and [1], respectively. A characterization of endo-regularity

of paths and cycles was found in [7]. In [8, 9], N. Pipattanajinda, J. Thamkeaw

and Sr. Arworn characterized endo-regularity of cycle book graphs.

As usual we denote by V (G) and E(G) the vertex set and the edge set of the

graph G , respectively. Let G and H be two simple graphs. The union of G and
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H , denoted by G∪H , is a graph such that the vertex set V (G∪H) = V (G)∪V (H)

and the edge set E(G ∪ H) = E(G) ∪ E(H). The join of G and H , denoted by

G + H , is a graph such that the vertex set V (G + H) = V (G) ∪ V (H) and the

edge set E(G + H) = E(G) ∪ E(H) ∪ {{u, v}|u ∈ V (G), v ∈ V (H)} .

A (graph) homomorphism from a graph G to a graph H is a mapping f :

V (G) → V (H) which preserves edges, i.e. ∀u, v ∈ V (G), {u, v} ∈ E(G) implies

{f(u), f(v)} ∈ E(H). A homomorphism f is an isomorphism if f is bijective

and f−1 is also a homomorphism. A homomorphism (resp. isomorphism) f from

G to itself is called an endomorphism (resp. automorphism) of G . Denoted

the class of all endomorphisms and of all automorphisms of G by End(G) and

Aut(G), respectively. It is well known that for any graph G , End(G) with the

composition forms a monoid when Aut(G) forms a group.

The graph with the vertex set {0, 1, . . . , n} and the edge set {{i, i + 1}|i =

0, 1, . . . , n − 1} is called a path Pn of length n . The graph with the vertex set

{1, 2, . . . , n} , such that n ≥ 3 and the edge set {{i, i + 1}|i = 1, 2, . . . , n} (with

addition modulo n) is called a cycle Cn of length n . We denote by Hom(G,H)

the class of all homomorphisms from a graph G to a graph H , and denote by

Homi
j(Pm, Pn) the class of all homomorphisms f ∈ Hom(Pm, Pn), such that

f(0) = i and f(m) = j . Then

Lemma 1.1. Let m,n be even integers, and f ∈ Hom(Pm, Pn) . If f(0) is even

(odd resp.), then f(m) is also even (odd resp.).

Corollary 1.2. If n is even, then

|Hom0
1(Pn, P2)| = |Hom1

0(Pn, P2)| = |Hom1
2(Pn, P2)| = |Hom2

1(Pn, P2)| = 0.

Lemma 1.3. If m,n are positive integers, m ≥ 3 , then

|Hom(Cm, Pn)| =

n−1
∑

i=0

[|Homi
i−1(Pm−1, Pn)| + |Homi

i+1(Pm−1, Pn)|].

Corollary 1.4. If m is odd, then |Hom(Cm, P2)| = 0.

A factor graph If of G under f which is a subgraph of G is called the

endomorphic image of G under f . This means, V (If ) = f(V (G)) and {f(u), f(v)}

∈ E(If ) if and only if there exist u′ ∈ f−1f(u) and v′ ∈ f−1f(v) such that

{u′, v′} ∈ E(G), where f−1(t) denotes the set of preimages of some vertex t of
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G under the mapping f. By ρf , we denote the equivalence relation on V (G)

induced by f , i. e. for any u, v ∈ V (G), (u, v) ∈ ρf if and only if f(u) = f(v).

Let S be a semigroup (monoid resp.). An element a of S is called an

idempotent if a2 = a . An element a of S is called a regular if a = aa′a

for some a′ ∈ S , such a′ is called a pseudo inverse to a . The semigroup S is

called regular if every element of S is regular. A regular element a of S is called

completely regular if there exists a pseudo inverse a′ to a such that aa′ = a′a .

In this case we call a′ a commuting pseudo inverse to a . The semigroup S is

called completely regular if every element of S is completely regular. A regular

semigroup S is called orthodox if the set of all idempotent elements of S (denoted

by Idpt(S)) forms a semigroup under the operation of S. The Green’s relations H

on S are defined by aHb ⇔ S1a = S1b and aS1 = bS1 . Denote the equivalence

class H of S containing element a by Ha .

Note that every bijective endomorphism on a finite graph is an automorphism,

then it is regular.

Lemma 1.5. [6] A semigroup S is completely regular if and only if S is a union

of (disjoint) groups.

Lemma 1.6. [6] Let S be a semigroup and e is an idempotent of S . Then He

is a subgroup of S .

Lemma 1.7. [5] Let G be a graph. Suppose f, g ∈ End(G) and f, g are regular.

Then fHg if and only if ρf = ρg and If = Ig .

We call a graph G endo -regular (endo -orthodox , endo -completely -regular ,

unretractive), if the monoid End(G) is regular (orthodox, completely regular,

group resp.). Note that for any cycle Cn is unretractive if and only if n is odd,

and every complete graph of n vertices, Kn is unretractive. The following lemmas

are useful for this paper.

Lemma 1.8. [2] Let G and H be graphs. The G+H is unretractive if and only

if G and H are unretractive.

Lemma 1.9. [7] A cycle Cn is endo-regular if and only if n is odd, or n is 4, 6,

or 8 .

Lemma 1.10. [4] Let G be a graph. Then G is endo-regular if and only if G+Kn

is endo-regular for any n ≥ 1 .
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Lemma 1.11. [1] Let G be a bipartite graph. Then G is endo-orthodox if and

only if G is one of the following graphs : K1,K2, P2, P3, C4, 2K1 and K1 ∪ K2.

Lemma 1.12. [7] For all positive integer n , the cycle C2n is not endo-completely-

regular.

An endomorphism f of G is called a path strong (cycle strong ) endomor-

phism if every path (cycle resp.) f(y0), f(y1), . . . , f(yl) of length l in f(G), there

exists xi ∈ f−1f(yi), for each i = 0, 1, . . . , l such that x0, x1, . . . , xl is a path

(cycle resp.) of length l in G . Denoted the class of all path strong and cycle

strong endomorphisms of G by pEnd(G) and cEnd(G), respectively.

Lemma 1.13. Let G be a graph and f ∈ End(G) . If f is regular, then f ∈

pEnd(G) ∩ cEnd(G) .

Proof. Let f ∈ End(G) be a regular endomorphism on G , then f = fgf for some

g ∈ End(G). Let f(y0), f(y1), . . . , f(yl) be a path (cycle) of length l in f(G).

For any i = 0, 1, . . . , l , let xi = gf(yi). Then

1. xi ∈ f−1f(yi) because f(xi) = fgf(yi) = f(yi).

2. {xi, xi+1} ∈ E(G) for all i = 0, 1, . . . , l − 1 because g ∈ End(G) and

{f(yi), f(yi+1)} ∈ E(G), imply that {gf(yi), gf(yi+1)} ∈ E(G).

3. xi 6= xj if i 6= j , because if i 6= j but xi = xj , then f(yi) = fgf(yi) =

f(xi) = f(xj) = fgf(yj) = f(yj) which is impossible.

Thus, x0, x1, . . . , xl is the path (cycle resp.) of length l in G .

2 Endo-Regular of Generalized Wheel Graphs

Let m,n be positive integers, n ≥ 3. For each i = 1, 2, . . . ,m , let Gi be a

graph which is isomorphic to the cycle Cn with the following vertex set V (Gi) =

{1i, 2i, . . . , ni} , and edge set E(Gi) = {{ki, (k + 1)i}|k = 1, 2, . . . , n} where + is

the addition modulo n .

A generalized wheel graph of m rounds, Wn(m) is the graph which the vertex

set and the edge set are

V (Wn(m)) =

m
⋃

i=1

V (Gi) ∪ {0},
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and

E(Wn(m)) =

n
⋃

k=1

{0, k1} ∪

m
⋃

i=1

E(Gi) ∪

m−1
⋃

i=1

{{ki, ki+1}|k = 1, 2, . . . , n},

respectively. For example of generalized wheel graph W5(3), see Fig. 1. (Note

that Wn(1) is a wheel graph which was denoted by Wn ).

Fig. 1. Generalized wheel graph W5(3).
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Since Wn
∼= Cn + K1 by Lemmas 1.8 - 1.12, it is easy to see that

Corollary 2.1. For any wheel graph Wn .

1. Wn is unretractive if and only if n is odd.

2. A retractive wheel graph Wn is endo-regular if and only if n = 4, 6, 8 .

3. A retractive wheel graph Wn is endo-orthodox if and only if n = 4 .

4. Every retractive wheel graph Wn is not endo-completely-regular.

For other generalized wheel graph Wn(m),m ≥ 2

Lemma 2.2. A generalized wheel graph Wn(m) is retractive.

Proof. Let f : V (Wn(m)) → V (Wn(m)) be defined by f(0) = 0, and f(xi) =

(x + i)1 for all xi ∈ V (Wn(m)). Then f ∈ End(Wn(m)) is non-injective.
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Fig. 2. A non-injective in End(W5(2)).

Fig. 3. A non-injective in End(W5(3)).

Lemma 2.3. For every f ∈ End(Wn(m)) , either f(0) = 0 , or f(0) ∈ V (G1) .

Proof. Let f ∈ End(Wn(m)). Since the induced subgraph by {0, 11, 21} of

Wn(m) is isomorphic to cycle C3 , {f(0), f(11), f(21)} must be a closed walk

in Wn(m), i.e. {f(0), f(11), f(21)} = {0, k1, (k + 1)1} for some k = 1, 2, . . . , n .

Therefore, f(0) ∈ V (G1) ∪ {0} .

Let f ∈ End(Wn(m)). Denote the set of all elements f(x) where x ∈ V (G1)

by f(G1), and the restriction of f on G1 by f |G1
.
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Lemma 2.4. Let m,n be positive integers where n odd with n > 3. Then for all

f ∈ End(Wn(m)) , f(0) = 0 , and f(G1) = V (G1) .

Proof. Let n be an odd integer with n > 3 and f ∈ End(Wn(m)). By Lemma

2.3, f(0) = 0, or f(0) ∈ V (G1). Suppose f(0) = k1 for some k = 1, 2, . . . , n , then

f(y1) ∈ {0, (k − 1)1, (k + 1)1, k2} for all y = 1, 2, . . . , n . But {f(0), f(y1), f((y +

1)1)} must be a closed walk, which is impossible if there exists y1 ∈ V (G1)

such that f(y1) = k2 . Therefore, f(G1) ⊆ {0, (k − 1)1, (k + 1)1} , i.e. f |G1
∈

Hom(G1, P ) where P is the induced subgraph of Wn(m) with V (P ) = {0, (k −

1)1, (k + 1)1} Since G1 is isomorphic to Cn , and P is isomorphic to P2 , by

Corolary1.4 |Hom(G1, P )| = |Hom(Cn, P2)| = 0 because n − 1 is even. This

contradicts to f |G1
∈ Hom(G1, P ). Hence f(0) = 0.

Moreover, f |G1
∈ End(G1) and End(G1) ∼= End(Cn) which is a group. There-

fore, f |G1
is one to one, i.e. f(G1) = V (G1).

Lemma 2.5. For any positive integer m , there exists f ∈ End(W3(m)) such that

f(0) 6= 0 .

Proof. Let f : V (W3(m)) → V (W3(m)) be defined by f(0) = 31 , f(11) = 0, and

for each xi 6= 11 ,

f(xi) =

{

(x − 1)i, i = 1;

xi−1, i 6= 1.

Then f ∈ End(W3(m)) such that f(0) 6= 0.

Lemma 2.6. Let m,n be positive integers. If m ≥ 3 , then Wn(m) is not endo-

regular.

Proof. Let m,n be positive integers, m ≥ 3. We will show that there exists

f ∈ End(Wn(m)) such that f is not regular. Let f ∈ End(Wn(m)) be defined

by f(0) = 0, and for each xi ∈ V (Wn(m)),

f(xi) =

{

(x − 1)1, i = 1;

xi−1, i > 1.

Thus 0, 11, 12 is a path in f(Wn(3)). Since f−1(0) = {0} , f−1(11) = {12, 21} ,

and f−1(12) = {13} , Wn(3) has no path 0, x, 13 , where x ∈ f−1(11). From

Lemma 1.13, f is not regular.

Lemma 2.7. The generalized wheel graph Wn(2) is not endo-regular for all even

positive integer n which n > 3 .
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Proof. Let n be even positive integer, n > 3. Define f ∈ End(Wn(2)) by f(0) =

n1 , and for each positive integer x; 0 < x ≤ n ,

f(x1) =

{

0, x is odd;

11, x is even.

and

f(x2) =

{

11, x is odd;

21, x is even.

Thus 0, 21 is a path in f(Wn(2)). Since f−1(0) = {11, 31, 51, . . . , (n − 1)1} , and

f−1(21) = {22, 42, . . . , n2} , Wn(2) has no path x1, y2 , where x1 ∈ f−1(0) and

y2 ∈ f−1(21). From Lemma 1.13, f is not regular.

Lemma 2.8. Let f ∈ End(W3(2)) . If f(x2) = y2 for some x2, y2 ∈ V (G2) , then

f is bijective.

Proof. Let f ∈ End(W3(2)) and f(x2) = y2 for some x2, y2 ∈ V (G2). Since the

induced subgraph by {12, 22, 32} is isomorphic to cycle C3 , this implies that the

induced by {f(12), f(22), f(32)} is also isomorphic to cycle C3. Thus f(G2) =

V (G2), implies f(G1) = V (G1), and f(0) = 0. Therefore, f is bijective.

Lemma 2.9. Let f ∈ End(W3(2)) . If f(x2) ∈ V (G1) ∪ {0} for all x2 ∈ V (G2) ,

then f is regular.

Proof. Let f ∈ End(W3(2)) and f(x2) ∈ V (G1) ∪ {0} for all x2 ∈ V (G2). Let

f1 : V (W3(1)) → V (W3(1)) be such that f1(0) = f(0) and f1(x1) = f(x1)

for all x ∈ {1, 2, 3} . Thus f1 ∈ End(W3(1)). Since W3(1) ∼= K4 , End(W3(1)) =

Aut(W3(1)) and f1 is bijective. Let g ∈ End(W3(2)) be defined by g(0) = f−1
1 (0),

g(x1) = f−1
1 (x1), and g(x2) = g((x + 1)1) for all x = 1, 2, 3. We can see that

f = fgf .

From Lemma 2.8 and Lemma 2.9, then

Corollary 2.10. A generalized wheel graph W3(2) is endo-regular.

Lemma 2.11. A generalized wheel graph Wn(2) is endo-regular, for all odd pos-

itive integer n , n ≥ 3 .

Proof. From Corollary 2.10, W3(2) is endo-regular. Consider Wn(2) when n > 3.

By Lemma 2.4, f(0) = 0, f(G1) = V (G1) and f |G1
is 1-1. Without loss of
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generality, for each i1 ∈ V (G1) let f(i1) = (x + i − 1)1 for some x = 1, . . . , n .

For each i2 ∈ V (G2), f(i2) ∈ {0, (x + i)1, (x + i − 2)1, (x + i − 1)2} . In any case

of f , let g ∈ End(Wn(2)) be defined by g(0) = 0 and g(x + i)r = (i + 1)r for all

r = 1, 2. Then we can prove that fgf = f . Therefore, for odd number n , n ≥ 3,

Wn(2) is endo-regular.

From Lemma 2.6, Lemma 2.7 and Lemma 2.11, then

Theorem 2.12. A generalized wheel graph Wn(m) is endo-regular if and only if

n is odd and m = 2 .

3 Endo-Orthodox and Endo-Completely-Regularity

of Generalized Wheel Graphs

This section, we characterize the endo-orthodox and endo-completely-regularity of

generalized wheel graphs Wn(2), where n is odd, n ≥ 3.

Lemma 3.1. Let n be odd and f ∈ End(Wn(2)) . Then f is idempotent if and

only if f |Wn(1) is identity map.

Proof. Necessity. Let f ∈ End(Wn(2)) be an idempotent. From Lemma 2.3,

f(0) ∈ V (G1) ∪ {0} . Suppose f(0) = x1 for some x1 ∈ V (G1). Then f(x1) =

f2(0) = f(0) = x1 , which is impossible because {0, x1} ∈ E(Wn(m)) but {f(0),

f(x1)} = {x1, x1} /∈ E(Wn(2)). Therefore, f(0) = 0 and f(x1) ∈ V (G1) for all

x1 ∈ V (G1). Since End(G1) ∼= End(Cn), f is one to one. So f must be in the

form f(x1) = (x + k)1 for all x = 1, . . . , n for some k = 0, 1, . . . , n − 1. Then

(x + k)1 = f(x1) = f2(x1) = f((x + k)1) = (x + k + k)1 . Thus k = 0. Therefore,

f(x1) = x1 , i.e. f |Wn(1) is the identity map.

Sufficiency. Let f ∈ End(Wn(2)) and f |Wn(1) be the identity map. Then

f(x2) ∈ {0, (x− 1)1, (x + 1)1, x2} . Thus f2(x2) = f(x2). Therefore, f is idempo-

tent.

Theorem 3.2. A generalized wheel graph Wn(m) is endo-orthodox if and only if

n is odd and m = 2 .

Proof. Necessity. Let Wn(m) is endo-orthodox. Then by Theorem 2.12, n is odd

and m = 2.
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Sufficiency. Consider Wn(2) where n is odd. Let f, g ∈ End(Wn(2)) be

idempotents. Then by Lemma 3.1, f |Wn(1) and g|Wn(1) are identity maps. Thus

fg|Wn(1) is also identity map. Again by Lemma 3.1, fg is idempotent. Therefore,

Wn(2) is endo-orthodox.

The next part we will show that only the generalized wheel graph W3(2) is

endo-completely-regular .

Lemma 3.3. The generalized wheel graph Wn(2) is not endo-completely-regular

for all odd integer n, n > 3 .

Proof. Let n be an odd integer, n > 3. Define f ∈ End(Wn(2)) by f(0) =

f(n2) = 0 and for each xi ∈ V (Wn(2)) \ {0, n2} ,

f(xi) =



















(x + 1)1, i = 1;

31, xi = 12;

32, xi = 22;

x1, xi ∈ {32, . . . , (n − 1)2}.

Suppose there exists commuting pseudo inverse g of f . Consider fg(32) =

fgf(22) = f(22) = 32 , then gf(32) = 32 . Therefore, g(31) = 32 . But fg(21) =

fgf(11) = f(11) = 21 , then gf(21) = 21 . Therefore, g(31) = 21 . It is impossi-

ble.

For the generalized wheel graph W3(2), let us denote the class of all non-

injective endomorphisms of W3(2) by End′(W3(2)). Since Aut(W3(2)) forms a

group and End(W3(2)) = End′(W3(2))∪Aut(W3(2)), End(W3(2)) is completely

regular if and only if End′(W3(2)) is also completely regular. Let f be an idem-

potent of End′(W3(2)). By Lemma 2.8, f(x2) ∈ V (W3(1)) for all x2 ∈ V (G2).

By Lemma 3.1, f |W3(1) is the identity map. Therefore, f(x2) ∈ V (W3(1)) \ {x1}

for all x2 ∈ V (G2) and the class of all non-injective idempotent endomorphisms

in W3(2) is Idpt(End′(W3(2))) =

{

e1 =

(

0 11 21 31 12 22 32

0 11 21 31 0 11 21

)

, e2 =

(

0 11 21 31 12 22 32

0 11 21 31 0 31 11

)

, e3 =

(

0 11 21 31 12 22 32

0 11 21 31 0 31 21

)

,

e4 =

(

0 11 21 31 12 22 32

0 11 21 31 21 0 11

)

, e5 =

(

0 11 21 31 12 22 32

0 11 21 31 21 1 0

)

, e6 =

(

0 11 21 31 12 22 32

0 11 21 31 21 31 0

)

,

e7 =

(

0 11 21 31 12 22 32

0 11 21 31 21 31 11

)

, e8 =

(

0 11 21 31 12 22 32

0 11 21 31 31 0 11

)

, e9 =

(

0 11 21 31 12 22 32

0 11 21 31 31 0 21

)

,
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e10 =

(

0 11 21 31 12 22 32

0 11 21 31 31 11 0

)

, e11 =

(

0 11 21 31 12 22 32

0 11 21 31 31 11 21

)

}

.

Then

Lemma 3.4. Let f, g ∈ End′(W3(2)) . The following statements are true:

1. fHg ⇔ ρf = ρg .

2. f ∈ Hek
for some 1 ≤ k ≤ 11 .

3. fHgf .

Proof. Let f, g ∈ End′(W3(2)).

1. Since f, g ∈ End′(W3(2)), by Lemma 2.8, f(x2), g(x2) ∈ V (W3(1)) for all

x2 ∈ V (G2), and If = Ig . Therefore, by Lemma 1.7, fHg ⇔ ρf = ρg .

2. Since f ∈ End′(W3(2)), by Lemma 2.8, f(x2) ∈ V (W3(1)) for all x2 ∈

V (G2). Let f(x2) = f(y1) ∈ V (W3(1)) where x 6= y , x ∈ {1, 2, 3} , y ∈ {1, 2, 3} ∪

{0} and f |W3(1) is bijective on W3(1). Let us define a mapping e on V (W3(2))

by

e(x) =

{

x, if x ∈ V (W3(1));

y, if x ∈ V (G2) and f(x) = f(y).

We will show that e ∈ End′(W3(2)) and f ∈ He . Let {x2, x
′

2} ∈ E(W3(2)).

Then e(x2) = y1 and e(x′

2) = y′

1 where f(x2) = f(y1) and f(x′

2) = f(y′

1).

Thus {f(x2), f(x′

2)} = {f(y1), f(y′

1)} ∈ E(W3(2)). Then y1 6= y2 , therefore,

{y1, y
′

1} ∈ E(W3(2)), i.e. e ∈ End(W3(2)). Since e|W3(1) is the identity map, by

Lemma 3.1, e is an idempotent of End′(W3(2)). Next, we show that f ∈ He .

Since W3(1) is isomorphic to K4 , for all x, y ∈ V (W3(1)), x = y if and only if

f(x) = f(y). Let x, y ∈ {0, 1, 2, 3} . Then f(x1) = f(y1) ⇔ x1 = y1 ⇔ e(x1) =

e(y1), f(x2) = f(y2) ⇔ f(x′

1) = f(y′

1) for some x′

1, y
′

1 ∈ V (W3(1)) ⇔ x′

1 = y′

1 ,

i.e. f(x2) = f(y2) ⇔ e(x2) = e(y2), and

f(x2) = f(y1) ⇒ e(x2) = y1

⇒ e(x2) = e(y1),

and

f(x2) 6= f(y1) ⇒ f(x2) = f(y′

1), for some y′

1 6= y1

⇒ e(x2) = y′

1 6= y1 = e(y1).
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Therefore, ρf = ρe , i.e., f ∈ He .

3. If xi, x
′

j ∈ V (W3(2)) such that f(xi) = f(x′

j), then gf(xi) = gf(x′

j).

Suppose there exist yi, y
′

j ∈ V (W3(2)) such that f(yi) 6= f(y′

j). Let f(yi) = u

and f(y′

j) = v for some u 6= v and u, v ∈ {0, 11, 21, 31} . From g|W3(1) is bijective

on W3(1). Thus g(u) 6= g(v), i.e. gf(yi) 6= gf(y′

j). Therefore, ρf = ρgf . Then

by 1, fHgf .

From Lemma 3.4(2), it is show that the semigroup End′(W3(2)) is a union of

(disjoint) groups. This implies that End′(W3(2)) is completely regular.

Theorem 3.5. A generalized wheel graph Wn(m) is endo-completely-regular if

and only if n = 3 and m = 2 .

Moreover, by Lemma 3.4, we can show that End′(W3(2)) forms a right group.

Lemma 3.6. Let f, f ′ ∈ Hek
for some 1 ≤ k ≤ 11 . If f |W3(1) = f ′|W3(1) , then

f = f ′ .

Proof. Let f, f ′ ∈ Hek
and f |W3(1) = f ′|W3(1) , for some k = 1, . . . , 11. Suppose

x2 ∈ V (G2) such that f(x2) = f(y1), for some y1 ∈ V (W3(1)). Then f(x2) =

f(y1) ⇔ ek(x2) = ek(y1) ⇔ f ′(x2) = f ′(y1). Therefore, f = f ′ .

Theorem 3.7. End′(W3(2)) forms a right group isomorphic to S4 × R11 .

Proof. From Lemma 3.6, it is clearly that αk : Hek
→ End(W3(1)) defined by

α(f) = f |W3(1) , is an isomorphism. Therefore, End(W3(1)) ∼= Hek
for all k =

1, . . . , 11. Let ϕ : End′(W3(2)) → (End(W3(1)) × R11) be defined by ϕ(f) =

(f |W3(1), rk) where f ∈ Hek
. Let f ∈ Hek

and g ∈ Hel
. By Lemma 3.4(3),

gf ∈ Hek
. Then ϕ(gf) = (gf |W3(1), rk) = (g|W3(1), rl)(f |W3(1), rk) = ϕ(g)ϕ(f).

Therefore ϕ is a homomorphism and from Lemma 3.6, ϕ is also one to one and

onto. Therefore, End′(W3(2)) ∼= (End(W3(1)) × R11). Since End(W3(1)) is

isomorphic to the group S4 , hence End′(W3(2)) ∼= S4 × R11 .

Corollary 3.8. |End′(W3(2))| = 11 · 4! = 264 and |End(W3(2))| = 270 .

Remark 3.9. For each non-injective f ∈ End′(W3(2)), let f1 = f |W3(1) . Then

g : V (W3(2)) → V (W3(2)) which is defined by g(0) = f1(0), and

g(xi) =

{

f−1
1 (xi), if i = 1;

f−1
1 f−1

1 (f(xi)), if i = 2,

is a commuting pseudo inverse.
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