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Abstract: A graph G is endo-regular (endo-orthodox, endo-completely-regular)
if the monoid of all endomorphisms on G is regular (orthodox, completely regular
respectively). In this paper, we characterize endo-regular (endo-orthodox, endo-
completely-regular) of generalized wheel graphs W, (m). For each m > 2, we
found that the W, (m) is endo-regular (endo-orthodox resp.) if and only if n is
odd and m = 2 and W, (m) is endo-completely-regular if and only if it is W3(2).
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1 Introduction and Preliminaries

In [3], W. Li characterized regular endomorphisms on arbitrary graphs. The char-
acterizations of endo-regular and endo-orthodox connected bipartite graphs were
explicitly found in [10] and [1], respectively. A characterization of endo-regularity
of paths and cycles was found in [7]. In [8, 9], N. Pipattanajinda, J. Thamkeaw
and Sr. Arworn characterized endo-regularity of cycle book graphs.

As usual we denote by V(G) and E(G) the vertex set and the edge set of the
graph G, respectively. Let G and H be two simple graphs. The union of G and
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H, denoted by GUH , is a graph such that the vertex set V(GUH) = V(G)UV (H)
and the edge set E(GU H) = E(G) U E(H). The join of G and H, denoted by
G + H, is a graph such that the vertex set V(G + H) = V(G) UV (H) and the
edge set E(G+ H)=E(G)UE(H)U {{u,v}|lu e V(G),ve V(H)}.

A (graph) homomorphism from a graph G to a graph H is a mapping f :
V(G) — V(H) which preserves edges, i.e. Yu,v € V(G), {u,v} € E(G) implies
{f(u), f(v)} € E(H). A homomorphism f is an isomorphism if f is bijective
and f~! is also a homomorphism. A homomorphism (resp. isomorphism) f from
G to itself is called an endomorphism (resp. automorphism) of G. Denoted
the class of all endomorphisms and of all automorphisms of G by End(G) and
Aut(G), respectively. It is well known that for any graph G, End(G) with the
composition forms a monoid when Aut(G) forms a group.

The graph with the vertex set {0,1,...,n} and the edge set {{i,i + 1}|i =
0,1,...,n — 1} is called a path P, of length n. The graph with the vertex set
{1,2,...,n}, such that n > 3 and the edge set {{i,i+ 1}|i = 1,2,...,n} (with
addition modulo n) is called a cycle C,, of length n. We denote by Hom(G, H)
the class of all homomorphisms from a graph G to a graph H, and denote by
Homé(Pm,Pn) the class of all homomorphisms f € Hom(P,,, P,), such that
f(0) =4 and f(m)=j. Then

Lemma 1.1. Let m,n be even integers, and f € Hom(Py,, P,). If f(0) is even
(odd resp.), then f(m) is also even (odd resp.).

Corollary 1.2. If n is even, then
|Hom{ (P, P2)| = [Homg(Py, Py)| = [Homy(Py, Po)| = |Homi(P,, P2)| = 0.

Lemma 1.3. If m,n are positive integers, m > 3, then

n—1
[Hom(Ch, P)| = ZHHomg—l(Pm—lv Pl + |H0m§+1(Pm—17Pn)”-
=0

Corollary 1.4. If m is odd, then |Hom(Cy,, P2)| = 0.

A factor graph Iy of G under f which is a subgraph of G is called the
endomorphic image of G under f. Thismeans, V(I;) = f(V(G)) and {f(u), f(v)}
€ E(Iy) if and only if there exist ' € f~!f(u) and o' € f~!f(v) such that
{u/;v'} € E(G), where f~1(t) denotes the set of preimages of some vertex t of
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G under the mapping f. By ps, we denote the equivalence relation on V(G)
induced by f,i. e. for any u,v € V(G), (u,v) € py if and only if f(u) = f(v).

Let S be a semigroup (monoid resp.). An element a of S is called an
idempotent if a*> = a. An element a of S is called a regular if a = ad’a
for some a’ € S, such o' is called a pseudo inverse to a. The semigroup S is
called regular if every element of S is regular. A regular element a of S is called
completely regular if there exists a pseudo inverse a’ to a such that aa’ = d’a.
In this case we call @’ a commuting pseudo inverse to a. The semigroup S is
called completely regular if every element of S is completely regular. A regular
semigroup S is called orthodox if the set of all idempotent elements of S (denoted
by Idpt(S)) forms a semigroup under the operation of S. The Green’s relations H
on S are defined by aHb < S'a = S'b and aS! = bS'. Denote the equivalence
class ‘H of S containing element a by H,.

Note that every bijective endomorphism on a finite graph is an automorphism,
then it is regular.

Lemma 1.5. [6] A semigroup S is completely reqular if and only if S is a union

of (disjoint) groups.

Lemma 1.6. [6] Let S be a semigroup and e is an idempotent of S. Then H,
is a subgroup of S.

Lemma 1.7. [5] Let G be a graph. Suppose f,g € End(G) and f,g are regular.
Then fHg if and only if pf = pg and Iy = 1.

We call a graph G endo-regular (endo-orthodox, endo-completely-regular,
unretractive), if the monoid End(G) is regular (orthodox, completely regular,
group resp.). Note that for any cycle C,, is unretractive if and only if n is odd,
and every complete graph of n vertices, K, is unretractive. The following lemmas
are useful for this paper.

Lemma 1.8. [2] Let G and H be graphs. The G+ H is unretractive if and only
if G and H are unretractive.

Lemma 1.9. [7] A cycle C,, is endo-regular if and only if n is odd, or n is 4,6,
or 8.

Lemma 1.10. [4] Let G be a graph. Then G is endo-regular if and only if G+ K,

is endo-regular for any n > 1.



48 Chamchuri J. Math. 8(2011): N. Pipattanajinda, U. Knauer and Sr. Arworn

Lemma 1.11. [{] Let G be a bipartite graph. Then G is endo-orthodoz if and
only if G is one of the following graphs: Ky, Ks, Py, P3,Cy,2K7 and K; U Ks.

Lemma 1.12. [7] For all positive integer n, the cycle Cap, is not endo-completely-

reqular.

An endomorphism f of G is called a path strong (cycle strong) endomor-
phism if every path (cycle resp.) f(yo), f(y1),..., f(y;) of length [ in f(G), there
exists z; € f~1f(y;), for each i = 0,1,...,1 such that zg,z1,...,2; is a path
(cycle resp.) of length | in G. Denoted the class of all path strong and cycle
strong endomorphisms of G by pEnd(G) and cEnd(G), respectively.

Lemma 1.13. Let G be a graph and f € End(G). If f is regular, then f €
pEnd(G) N cEnd(Q).

Proof. Let f € End(G) be a regular endomorphism on G, then f = fgf for some

g € End(G). Let f(yo), f(y1),...,f(y1) be a path (cycle) of length [ in f(G).
For any i =0,1,...,1, let ; = gf(y;). Then

1. ;€ [~ f(y:) because f(x:) = fgf(yi) = f(yi)-

2. {xs,zi41} € E(G) for all ¢ = 0,1,...,1 — 1 because g € End(G) and
{f (i), f(yix1)} € E(G), imply that {gf(y:), 9 (yi+1)} € E(G).

3. x; #a; if ¢ # j, because if ¢ # j but z; = z;, then f(y;) = fogf(y) =
f(x;i) = f(z;) = fgf(y;) = f(y;) which is impossible.

Thus, zg,z1,...,2; is the path (cycle resp.) of length [ in G. O

2 Endo-Regular of Generalized Wheel Graphs

Let m,n be positive integers, n > 3. For each i = 1,2,...,m, let G; be a
graph which is isomorphic to the cycle C,, with the following vertex set V(G;) =
{1:,2i,...,n;}, and edge set E(G;) = {{ki,(k+1);}|k =1,2,...,n} where + is
the addition modulo n.

A generalized wheel graph of m rounds, W,,(m) is the graph which the vertex

set and the edge set are

m

V(Wa(m)) = JV(Gi) u {0},

i=1
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and

m m—1

E(Wn(m)) = U {O,kil} U UE(GZ) U U {{k‘i, ]{)i+1}|k’ =1,2,... ,n},
k=1 % i=1

i—1

respectively. For example of generalized wheel graph W5(3), see Fig. 1. (Note
that W, (1) is a wheel graph which was denoted by W,,).

13

/N

43 33

Fig. 1. Generalized wheel graph W;5(3).
Since W, = C,, + K; by Lemmas 1.8 - 1.12, it is easy to see that

Corollary 2.1. For any wheel graph W, .
1. W, is unretractive if and only if n is odd.
2. A retractive wheel graph W, is endo-reqular if and only if n = 4,6,8.
3. A retractive wheel graph W, is endo-orthodox if and only if n = 4.
4. Every retractive wheel graph W, is not endo-completely-regular.
For other generalized wheel graph W,,(m),m > 2

Lemma 2.2. A generalized wheel graph W, (m) is retractive.

Proof. Let f : V(W,(m)) — V(W,(m)) be defined by f(0) = 0, and f(x;) =
(x+14); for all x; € V(W,,(m)). Then f € End(W,(m)) is non-injective. O
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Fig. 3. A non-injective in End(W5(3)).

Lemma 2.3. For every f € End(W,(m)), either f(0) =0, or f(0) € V(Gy).

Proof. Let f € End(W,(m)). Since the induced subgraph by {0,11,21} of
W, (m) is isomorphic to cycle Cs, {f(0), f(11), f(21)} must be a closed walk
in W,(m), i.e. {f(0),f(11),f(21)} = {0,k1,(k+ 1)1} for some k =1,2,...,n.
Therefore, f(0) € V(G1) U {0}. O

Let f € End(W,(m)). Denote the set of all elements f(z) where z € V(G;)
by f(G1), and the restriction of f on Gy by f|g,.
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Lemma 2.4. Let m,n be positive integers where n odd with n > 3. Then for all

Proof. Let n be an odd integer with n > 3 and f € End(W,(m)). By Lemma
2.3, f(0) =0, 0r f(0) € V(G1). Suppose f(0) = ky for some k =1,2,...,n, then
fy) € {0,(k = D1, (k+ D1, ko} forall y =1,2,...,n. But {f(0), f(y1), f((y +
1)1)} must be a closed walk, which is impossible if there exists y1 € V(G1)
such that f(y;) = ko. Therefore, f(G1) C {0,(k — 1)1, (k+ 1)1}, i.e. flg, €
Hom(G4, P) where P is the induced subgraph of W, (m) with V(P) = {0, (k —
1)1,(k 4+ 1)1} Since G; is isomorphic to C,, and P is isomorphic to P, by
Corolaryl.4 |Hom(G1,P)| = |Hom(C,, P2)| = 0 because n — 1 is even. This
contradicts to f|g, € Hom(G1, P). Hence f(0) =0.

Moreover, f|g, € End(G;1) and End(G1) = End(C,,) which is a group. There-
fore, f|g, is one to one, i.e. f(G1) =V (Gy). O

Lemma 2.5. For any positive integer m., there exists f € End(Ws(m)) such that
1(0) £0.
Proof. Let f: V(W3(m)) — V(W5(m)) be defined by f(0) =3y, f(1;) =0, and

for each z; # 11,
N (3? — 1)1‘, = 1;
f(xl) B { Ti—1, ) 75 1.
Then f € End(Ws3(m)) such that f(0) # 0. O

Lemma 2.6. Let m,n be positive integers. If m > 3, then W, (m) is not endo-

reqular.

Proof. Let m,n be positive integers, m > 3. We will show that there exists
f € End(W,(m)) such that f is not regular. Let f € End(W,(m)) be defined
by f(0) =0, and for each x; € V(W,,(m)),

fa) _{ (x—1), i=1;

Ti—1, > 1.

Thus 0,11, 15 is a path in f(W,(3)). Since f~1(0) = {0}, f~1(11) = {12,21},
and f71(13) = {13}, W,(3) has no path 0,z,13, where z € f~!(1;). From
Lemma 1.13, f is not regular. O

Lemma 2.7. The generalized wheel graph W, (2) is not endo-regular for all even

positive integer n which n > 3.
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Proof. Let n be even positive integer, n > 3. Define f € End(W,(2)) by f(0) =
n1, and for each positive integer z; 0 < x < n,

Flzn) = { 0, «isodd;

11, xis even.

and

1y, =z is odd;
f(962)={ '

21, x is even.
Thus 0,2; is a path in f(W,(2)). Since f~1(0) = {11,31,51,...,(n — 1)1}, and
F71(21) = {22,42,...,n2}, W,(2) has no path z1,ys, where z; € f~(0) and
y2 € f71(21). From Lemma 1.13, f is not regular. O

Lemma 2.8. Let f € End(W3(2)). If f(z2) = y2 for some x2,y2 € V(G2), then
f s bijective.

Proof. Let f € End(W3(2)) and f(x2) = y2 for some z3,y2 € V(G2). Since the
induced subgraph by {12,22,32} is isomorphic to cycle Cs, this implies that the

induced by {f(12), f(22), f(32)} is also isomorphic to cycle C3. Thus f(Gsz) =
V(Gs2), implies f(G1) =V (G;), and f(0) = 0. Therefore, f is bijective. O

Lemma 2.9. Let f € End(W3(2)). If f(x2) € V(G1)U{0} for all zo € V(G2),
then f is reqular.

Proof. Let f € End(W5(2)) and f(z2) € V(G1) U {0} for all xo € V(G2). Let
fi : V(Ws5(1)) — V(W3(1)) be such that f1(0) = f(0) and fi(z1) = f(z1)
for all z € {1,2,3}. Thus f1 € End(W3(1)). Since W3(1) = Ky, End(W3(1)) =
Aut(W3(1)) and f; is bijective. Let g € End(W3(2)) be defined by g(0) = f;1(0),
g(z1) = frl(xy), and g(xs) = g((x + 1)1) for all z = 1,2,3. We can see that
f=17rgf. 0

From Lemma 2.8 and Lemma 2.9, then
Corollary 2.10. A generalized wheel graph W3(2) is endo-regular.

Lemma 2.11. A generalized wheel graph W,,(2) is endo-regular, for all odd pos-

itive integer n, n > 3.

Proof. From Corollary 2.10, W5(2) is endo-regular. Consider W,,(2) when n > 3.
By Lemma 2.4, f(0) = 0, f(G1) = V(G1) and fl|g, is 1-1. Without loss of
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generality, for each i1 € V(Gy) let f(i1) = (z +i—1); for some z = 1,...,n.
For each iz € V(G2), f(i2) € {0, (z +i)1,(x + i —2)1,(x + i — 1)2}. In any case
of f,let g € End(W,(2)) be defined by ¢g(0) =0 and g(x + i), = (i + 1), for all
r =1,2. Then we can prove that fgf = f. Therefore, for odd number n, n > 3,
W, (2) is endo-regular. O

From Lemma 2.6, Lemma 2.7 and Lemma 2.11, then

Theorem 2.12. A generalized wheel graph W, (m) is endo-regular if and only if

n 1s odd and m = 2.

3 Endo-Orthodox and Endo-Completely-Regularity
of Generalized Wheel Graphs

This section, we characterize the endo-orthodox and endo-completely-regularity of
generalized wheel graphs W,,(2), where n is odd, n > 3.

Lemma 3.1. Let n be odd and f € End(W,(2)). Then f is idempotent if and
only if flw, )y is identity map.

Proof. Necessity. Let f € End(W,(2)) be an idempotent. From Lemma 2.3,
f(0) € V(G1) U {0}. Suppose f(0) = z; for some z; € V(G1). Then f(z;) =
f2(0) = £(0) = 21, which is impossible because {0,z1} € E(W,(m)) but {f(0),
flz1)} = {z1,21} ¢ E(W,(2)). Therefore, f(0) =0 and f(z1) € V(G;) for all
x1 € V(Gy). Since End(G1) = End(Cy,), f is one to one. So f must be in the
form f(x1) = (x +k); for all z =1,...,n for some k = 0,1,...,n — 1. Then
(x 4+ k)1 = f(z1) = f2(x1) = f((x + k)1) = (x + k+ k)1. Thus k = 0. Therefore,
f(w1) =21, ie. flw,q) is the identity map.

Sufficiency. Let f € End(W,(2)) and flw, 1) be the identity map. Then
f(xa) €{0,(x — 1)1, (x+ 1)1, 22}. Thus f?(x2) = f(x2). Therefore, f is idempo-
tent. O

Theorem 3.2. A generalized wheel graph W, (m) is endo-orthodoz if and only if
n is odd and m = 2.

Proof. Necessity. Let W,,(m) is endo-orthodox. Then by Theorem 2.12, n is odd

and m = 2.
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Sufficiency. Consider W, (2) where n is odd. Let f,g € End(W,(2)) be
idempotents. Then by Lemma 3.1, f|w, 1) and g|w, 1) are identity maps. Thus
fglw, ) is also identity map. Again by Lemma 3.1, fg is idempotent. Therefore,
W,(2) is endo-orthodox. O

The next part we will show that only the generalized wheel graph W3(2) is

endo-completely-regular .

Lemma 3.3. The generalized wheel graph W, (2) is not endo-completely-reqular
for all odd integer n, n > 3.

Proof. Let n be an odd integer, n > 3. Define f € End(W,(2)) by f(0) =
f(n2) =0 and for each z; € V(W,,(2)) \ {0,n2},

(x+1)17 i =1

3 ) Ty = 127
fla)=< "
32, T = 295
x, 1‘,’6{32,...,(71—1)2}.

Suppose there exists commuting pseudo inverse g of f. Consider fg(32) =
faf(22) = f(22) = 33, then gf(33) = 35. Therefore, ¢g(31) = 32. But fg(2;) =
faf(11) = f(11) = 21, then ¢f(21) = 21. Therefore, ¢g(31) = 2;. It is impossi-
ble. O

For the generalized wheel graph W3(2), let us denote the class of all non-
injective endomorphisms of W5(2) by End'(W3(2)). Since Aut(W5(2)) forms a
group and End(W35(2)) = End' (W5(2)) U Aut(W3(2)), End(W5(2)) is completely
regular if and only if End' (W5(2)) is also completely regular. Let f be an idem-
potent of End'(W5(2)). By Lemma 2.8, f(z2) € V(Ws5(1)) for all zo € V(Ga2).
By Lemma 3.1, flw,() is the identity map. Therefore, f(z2) € V(W3(1)) \ {x1}
for all zo € V(G2) and the class of all non-injective idempotent endomorphisms
in W3(2) is Idpt(End (W3(2))) =

{ 01y 2131 19 29 39 01y 2131 19 29 39 01y 2131 19 29 39
e = €y = €q =
! 01;2:3,0 1,2,/ 2 01;2:3,0 3,1,/ 01,2,3,0 3,2, /)

(0231223 (0L231 1223 (0L231 1223
T 01,213,200 1, )77\ 01,213,2,10 )77 T\ 01,2,3,213,0)°

01521 31 1229 3o 01521 31 1225 3o 01521 31 1229 3o
e7r = , 68 = , €9 = 5
TTN01,2,3,213, 1, )08 01,2;3,3,0 1, /)" 01;2;3,3,0 2
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015 2,3, 1225 39 01523, 1229 39 }
el = ,e11 = .
701,213,310 )77 \01,213,3, 1, 24

Then

Lemma 3.4. Let f,g € End' (W3(2)). The following statements are true:

1. fHg < pr=pg-

2. feH,, forsomel<k<I11.

3. fHgf.

Proof. Let f,g € End' (W3(2)).

1. Since f,g € End (W3(2)), by Lemma 2.8, f(x2),g(xz2) € V(W;5(1)) for all
x9 € V(G2), and Iy = I;. Therefore, by Lemma 1.7, fHg < ps = py.

2. Since f € End'(W3(2)), by Lemma 2.8, f(z2) € V(W5(1)) for all z5 €
V(G2). Let f(x2) = f(y1) € V(W5(1)) where x # vy, z € {1,2,3}, y € {1,2,3} U
{0} and fl|w,() is bijective on W3(1). Let us define a mapping e on V(W3(2))
by

e(z) = { z, ifx e V(Ws(1));
g, ifz € V(Gy) and f(z) = [(y).
We will show that e € End' (W3(2)) and f € H.. Let {zo,25} € E(W3(2)).
Then e(r2) = y1 and e(wy) = y; where f(zz) = f(y1) and f(x3) = f(y1).
Thus {f(w2), f@)} = LF(), ()} € E(Wa(2)). Then gy # go, therefore,
{y1,y1} € E(W3(2)), i.e. e € End(W3(2)). Since e|y,(1) is the identity map, by
Lemma 3.1, e is an idempotent of End'(W3(2)). Next, we show that f € H,.
Since W3(1) is isomorphic to Ky, for all z,y € V(W3(1)), = = y if and only if
f(x) = f(y). Let z,y € {0,1,2,3}. Then f(z1) = f(y1) & 1 =y1 & e(x1) =
(1), Flz2) = Flya) & F(ah) = F(3}) for some a4,y € V(Wy(1)) & a4 = o
ie. f(xe) = f(y2) & e(x2) = e(y2), and

flz2) = f(y1) = e(z2) =0
= e(z2) = e(y1),

and

fx2) # f(y1) = flz2) = f(y)), for someyy # p
= e(z2) =y; #y1 = e(y1).
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Therefore, pf = pe, ie., f € He.

3. If a;, 2} € V(W3(2)) such that f(z;) = f(2}), then gf(x;) = gf(a]).
Suppose there exist y;,y; € V(W3(2)) such that f(y;) # f(y;). Let f(yi) = u
and f(y;) = v for some u # v and u,v € {0,1y,21,31}. From g|w, (1) is bijective
on W3(1). Thus g(u) # g(v), i.e. gf(yi) # gf(y;). Therefore, py = pyr. Then
by 1, fHgf. O

From Lemma 3.4(2), it is show that the semigroup End'(W5(2)) is a union of
(disjoint) groups. This implies that End'(W3(2)) is completely regular.

Theorem 3.5. A generalized wheel graph W, (m) is endo-completely-reqular if
and only if n =3 and m = 2.

Moreover, by Lemma 3.4, we can show that End’ (W3(2)) forms a right group.

Lemma 3.6. Let f,f' € He, for some 1 <k <11. If flw,1)y = f'lwyq), then
f=r.

Proof. Let f, f' € H, and flw,a) = f'|lwyq), for some &k =1,...,11. Suppose
x9 € V(G3) such that f(x2) = f(y1), for some y; € V(W5(1)). Then f(z2) =
f(y1) © ex(z2) = ex(y1) < f'(x2) = f'(y1). Therefore, f = f’. O

Theorem 3.7. End (W53(2)) forms a right group isomorphic to Sy x Ry .

Proof. From Lemma 3.6, it is clearly that oy : H., — End(W3(1)) defined by
a(f) = flwsq), is an isomorphism. Therefore, End(Ws(1)) = H,, for all k =
1,...,11. Let ¢ : End (W5(2)) — (End(W5(1)) x Ry1) be defined by ¢(f) =
(flwsy;Tx) where f € H., . Let f € H,, and g € H,. By Lemma 3.4(3),
9f € He,. Then ¢(gf) = (9flws),76) = (9lwyy: r) (flws ), ) = (9)e(f) -
Therefore ¢ is a homomorphism and from Lemma 3.6, ¢ is also one to one and
onto. Therefore, End' (W3(2)) = (End(W5(1)) X Ry1). Since End(W3(1)) is
isomorphic to the group Sy, hence End' (W5(2)) = .54 X Ry . O

Corollary 3.8. |End (W5(2))| = 11-4! = 264 and |End(W3(2))| = 270.

Remark 3.9. For each non-injective f € End (W3(2)), let fi = flw,). Then
g: V(W3(2)) — V(W3(2)) which is defined by ¢g(0) = f1(0), and

N R CO it = 1;
) {fflffl(f(xi)), if i =2,

is a commuting pseudo inverse.
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