

Module Amenability and Weak Module Amenability for Second Dual of Banach Algebras

Massoud Amini and Abasalt Bodaghi*

Received 11 Mar 2010 Revised 15 May 2010 Accepted 17 May 2010

Abstract: In this paper we define the weak module amenability of a Banach algebra \mathcal{A} which is a Banach module over another Banach algebra \mathfrak{A} with compatible actions, and show that under some mild conditions weak module amenability of \mathcal{A}^{**} implies weak module amenability of \mathcal{A} . Also among other results, we investigate the relation between module Arens regularity of a Banach algebra and module amenability of its second dual. As a consequence we prove that $\ell^1(S)$ is always weakly module amenable (as an $\ell^1(E)$ -module), where S is an inverse semigroup with an upward directed set of idempotents E.

Keywords: Banach modules, weak amenability, module amenability, weak module amenability, semigroup algebra, inverse semigroup

2000 Mathematics Subject Classification: 46H25

1 Introduction

A Banach algebra \mathcal{A} is *amenable* if every bounded derivation from \mathcal{A} into any dual Banach A-module is inner, equivalently if $H^1(\mathcal{A}, X^*) = \{0\}$ for every Banach Amodule X, where $H^1(\mathcal{A}, X^*)$ is the *first Hochschild cohomology group* of A with

^{*} Corresponding author

coefficients in X^* . This concept was introduced by Barry Johnson in [20]. The notion of weak amenability was introduced by W. G. Bade, P. C. Curtis and H. G. Dales in [4] for commutative Banach algebras. Later Johnson defined weak amenability for arbitrary Banach algebras [22]. In fact a Banach algebra \mathcal{A} is *weakly amenable* if $H^1(\mathcal{A}, \mathcal{A}^*) = \{0\}$.

Let \mathcal{A} be a Banach algebra and \mathcal{A}^{**} be the second dual of \mathcal{A} . It is known that the Banach algebra \mathcal{A} inherits amenability from \mathcal{A}^{**} [18] (see also [17]). The first author in [1] introduced the concept of module amenability for Banach algebras which are Banach modules on another Banach algebra with compatible actions. This could be considered as a generalization of the Johnson's amenability. It is shown in [2] that if \mathcal{A} is a commutative Banach \mathfrak{A} -module such that \mathcal{A}^{**} is \mathfrak{A} -module amenable, then \mathcal{A} is module amenable. The authors improved this result for the concept of module biflatness in [5], by assuming a weaker condition on \mathcal{A} .

The analogous result for weak amenability is not known in general, but it is known to hold for Banach algebras \mathcal{A} which are left ideal in \mathcal{A}^{**} [17] (see also [7]), the dual Banach algebras [16], the Banach algebras \mathcal{A} which are Arens regular and every derivation from \mathcal{A} into \mathcal{A}^* is weakly compact [13], Banach algebras for which the second adjoint of each derivation $D: \mathcal{A} \to \mathcal{A}^*$ satisfies $D''(\mathcal{A}^{**}) \subseteq WAP(\mathcal{A})$, and Banach algebras \mathcal{A} which are right ideals in \mathcal{A}^{**} and satisfy $\mathcal{A}^{**}\mathcal{A} = \mathcal{A}^{**}$ [15]. For the latter case, using the concept of module structures on iterated duals, an alternative proof is given in [6].

A discrete semigroup S is called *amenable* if there exists a mean m on $\ell^{\infty}(S)$ which is both left and right invariant (see [14]). An *inverse semigroup* is a discrete semigroup S such that for each $s \in S$, there is a unique element $s^* \in S$ with $ss^*s = s$ and $s^*ss^* = s^*$. Elements of the form ss^* are called *idempotents* of S. For an inverse semigroup S, a left invariant mean on $\ell^{\infty}(S)$ is right invariant and vise versa.

Amini and Ebrahimi Bagha in [3] defined the concept of weak module amenability for a Banach algebra which is a commutative Banach module over another Banach algebra and showed that if S is commutative semigroup with the set of idempotents E, under a natural action, $\ell^1(S)$ is always weak $\ell^1(E)$ -module amenable. In this paper we define weak module amenability in a more general context, for a Banach algebra which is not necessarily a commutative Banach module, and show that if S is an inverse semigroup with an upward directed set of idempotents E, then $\ell^1(S)$ as an $\ell^1(E)$ -module is weak module amenable. This could be considered as the module version (for inverse semigroups) of a result of Johnson [21] which asserts that for any locally compact group G, the group algebra $L^1(G)$ is weakly amenable.

We also prove that when \mathfrak{A} acts trivially on \mathcal{A} from left, then under some mild conditions, weak module amenability \mathcal{A}^{**} implies weak amenability $\mathcal{A}^{**}/J^{\perp\perp}$, where J is the closed ideal of \mathcal{A} generated by $\alpha \cdot (ab) - (ab) \cdot \alpha$ for all $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. As a consequence we show that under some conditions on the Banach algebra \mathcal{A}/J , weak module amenability of \mathcal{A}^{**} implies weak module amenability of \mathcal{A} . Finally, we find a relation between module Arens regularity of a Banach algebra \mathcal{A} with module topological centers and module amenability of \mathcal{A}^{**} .

2 Module Amenability

Throughout this paper, \mathcal{A} and \mathfrak{A} are Banach algebras such that \mathcal{A} is a Banach \mathfrak{A} -bimodule with compatible actions, that is

$$\alpha \cdot (ab) = (\alpha \cdot a)b, \ (ab) \cdot \alpha = a(b \cdot \alpha) \quad (a, b \in \mathcal{A}, \alpha \in \mathfrak{A}).$$

Let X be a Banach \mathcal{A} -bimodule and a Banach \mathfrak{A} -bimodule with compatible actions, that is

$$\alpha \cdot (a \cdot x) = (\alpha \cdot a) \cdot x, \ a \cdot (\alpha \cdot x) = (a \cdot \alpha) \cdot x, \ (\alpha \cdot x) \cdot a = \alpha \cdot (x \cdot a) \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X)$$

and the same for the right or two-sided actions. Then we say that X is a Banach \mathcal{A} - \mathfrak{A} -module. If moreover

$$\alpha \cdot x = x \cdot \alpha \quad (\alpha \in \mathfrak{A}, x \in X)$$

then X is called a *commutative* \mathcal{A} - \mathfrak{A} -module. If X is a (commutative) Banach \mathcal{A} - \mathfrak{A} -module, then so is X^* , where the actions of \mathcal{A} and \mathfrak{A} on X^* are defined by

$$\langle \alpha \cdot f, x \rangle = \langle f, x \cdot \alpha \rangle, \ \langle a \cdot f, x \rangle = \langle f, x \cdot a \rangle \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X, f \in X^*)$$

and the same for the right actions. Let Y be another $\mathcal{A}-\mathfrak{A}$ -module, then a $\mathcal{A}-\mathfrak{A}$ -module morphism from X to Y is a norm-continuous map $\varphi: X \longrightarrow Y$ with $\varphi(x \pm y) = \varphi(x) \pm \varphi(y)$ and

$$\varphi(\alpha \cdot x) = \alpha \cdot \varphi(x), \ \varphi(x \cdot \alpha) = \varphi(x) \cdot \alpha, \ \varphi(a \cdot x) = a \cdot \varphi(x), \varphi(x \cdot a) = \varphi(x) \cdot a,$$

for $x, y \in X, a \in \mathcal{A}$, and $\alpha \in \mathfrak{A}$.

Note that when \mathcal{A} acts on itself by algebra multiplication, it is not in general a Banach \mathcal{A} - \mathfrak{A} -module, as we have not assumed the compatibility condition

$$a \cdot (\alpha \cdot b) = (a \cdot \alpha) \cdot b \quad (\alpha \in \mathfrak{A}, a, b \in \mathcal{A}).$$

If \mathcal{A} is a commutative \mathfrak{A} -module and acts on itself by multiplication from both sides, then it is also a Banach \mathcal{A} - \mathfrak{A} -module.

Consider the projective tensor product $\mathcal{A} \widehat{\otimes} \mathcal{A}$. It is well known that $\mathcal{A} \widehat{\otimes} \mathcal{A}$ is a Banach algebra with respect to the canonical multiplication map defined by

$$(a\otimes b)(c\otimes d)=(ac\otimes bd)$$

and extended by bi-linearity and continuity [9]. Then $\mathcal{A}\widehat{\otimes}\mathcal{A}$ is a Banach \mathcal{A} - \mathfrak{A} -module with canonical actions. Let I be the closed ideal of the projective tensor product $\mathcal{A}\widehat{\otimes}\mathcal{A}$ generated by elements of the form $\alpha \cdot a \otimes b - a \otimes b \cdot \alpha$ for $\alpha \in \mathfrak{A}, a, b \in \mathcal{A}$. Consider the map $\omega \in \mathcal{L}(\mathcal{A}\widehat{\otimes}\mathcal{A}, \mathcal{A})$ defined by $\omega(a \otimes b) = ab$ and extended by linearity and continuity. Let J be the closed ideal of \mathcal{A} generated by $\omega(I)$. Then the module projective tensor product $\mathcal{A}\widehat{\otimes}_{\mathfrak{A}}\mathcal{A} \cong (\mathcal{A}\widehat{\otimes}\mathcal{A})/I$ and the quotient Banach algebra \mathcal{A}/J are Banach \mathfrak{A} -modules with compatible actions. We have $(\mathcal{A}\widehat{\otimes}_{\mathfrak{A}}\mathcal{A})^* = \mathcal{L}_{\mathfrak{A}}(\mathcal{A}, \mathcal{A}^*)$ where the right hand side is the space of all \mathfrak{A} -module morphism from \mathcal{A} to \mathcal{A}^* [29]. Also the map $\widetilde{\omega} \in \mathcal{L}(\mathcal{A}\widehat{\otimes}_{\mathfrak{A}}\mathcal{A}, \mathcal{A}/J)$ defined by $\widetilde{\omega}(a \otimes b + I) = ab + J$ extends to an \mathfrak{A} -module morphism.

Let \mathcal{A} and \mathfrak{A} be as in the above and X be a Banach $\mathcal{A}-\mathfrak{A}$ -module. Let I and J be the corresponding closed ideals of $\mathcal{A}\widehat{\otimes}\mathcal{A}$ and \mathcal{A} , respectively. A bounded map $D: \mathcal{A} \longrightarrow X$ is called a *module derivation* if

$$D(a \pm b) = D(a) \pm D(b), \quad D(ab) = D(a) \cdot b + a \cdot D(b) \quad (a, b \in \mathcal{A}),$$

and

$$D(\alpha \cdot a) = \alpha \cdot D(a), \quad D(a \cdot \alpha) = D(a) \cdot \alpha \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A})$$

Although D is not necessary linear, but still its boundedness implies its norm continuity (since it preserves subtraction). When X is commutative \mathcal{A} - \mathfrak{A} -module, each $x \in X$ defines a module derivation

$$D_x(a) = a \cdot x - x \cdot a \quad (a \in \mathcal{A}).$$

These are called *inner* module derivations. The Banach algebra \mathcal{A} is called *module* amenable (as an \mathfrak{A} -module) if for any commutative Banach \mathcal{A} - \mathfrak{A} -module X, each module derivation $D : \mathcal{A} \longrightarrow X^*$ is inner [1]. Let \Box and \Diamond be the first and second Arens products on the second dual space \mathcal{A}^{**} , then \mathcal{A}^{**} is a Banach algebra with respect to both of these products. When these two products coincide on \mathcal{A}^{**} , we say that \mathcal{A} is *Arens regular*, and when they coincide only on \mathcal{A} we say that \mathcal{A} is *strongly Arens irregular*. Closed subalgebras of the algebra $\mathcal{B}(H)$ of bounded operators on a Hilbert space H are Arens regular, whereas the group algebra $L^1(G)$ of a locally compact group G is strongly Arens irregular [11, 23].

The first module topological center of \mathcal{A}^{**} (as an \mathfrak{A} -module) is

$$\mathcal{Z}_{\mathfrak{A}}^{(1)}(\mathcal{A}^{**}) = \{ G \in \mathcal{A}^{**} : F \longrightarrow G \Box F \text{ is } \sigma(\mathcal{A}^{**}, J^{\perp}) \text{-continuous} \}.$$

It is shown in [2] that

$$\mathcal{Z}_{\mathfrak{A}}^{(1)}(\mathcal{A}^{**}) = \{ G \in \mathcal{A}^{**} : G \Box F - G \Diamond F \in J^{\perp \perp} \ \forall F \in \mathcal{A}^{**} \}.$$

Also, like in the classic case, we can define the *second module topological center* of \mathcal{A}^{**} by

$$\mathcal{Z}_{\mathfrak{A}}^{(2)}(\mathcal{A}^{**}) = \{ G \in \mathcal{A}^{**} : F \longrightarrow F \Diamond G \text{ is } \sigma(\mathcal{A}^{**}, J^{\perp}) \text{-continuous} \}.$$

It is shown in [2, Proposition 2.2], \mathcal{A} is module Arens regular if and only if $\mathcal{Z}_{\mathfrak{A}}^{(1)}(\mathcal{A}^{**}) = \mathcal{A}^{**}$, or equivalently $\mathcal{Z}_{\mathfrak{A}}^{(2)}(\mathcal{A}^{**}) = \mathcal{A}^{**}$. Also $\mathcal{Z}_{\mathfrak{A}}^{(1)}(\mathcal{A}^{**})$ and $\mathcal{Z}_{\mathfrak{A}}^{(1)}(\mathcal{A}^{**})$ are $\sigma(\mathcal{A}^{**}, J^{\perp})$ -closed subalgebras of (\mathcal{A}^{**}, \Box) containing \mathcal{A} . Now suppose that \mathcal{A} is a commutative Banach \mathfrak{A} -module, then $J^{\perp \perp} = 0$. Hence for each α in \mathfrak{A} and F, G in \mathbf{B} , we have $f \Box G = G \Diamond F$ for all $F \in \mathcal{A}^{**}$. Thus

$$(\alpha \cdot G) \Box F = \alpha \cdot (G \Diamond F) = \alpha \cdot (G \Diamond F) = (\alpha \cdot G) \Diamond F) \quad (F \in \mathcal{A}^{**})$$

Therefore $\mathcal{Z}^{(1)}_{\mathfrak{A}}(\mathcal{A}^{**})$ is an \mathfrak{A} -submodule of \mathcal{A}^{**} . Similarly, for $\mathcal{Z}^{(2)}_{\mathfrak{A}}(\mathcal{A}^{**})$.

Definition 2.1. [1] A bounded net $\{\widetilde{\xi_j}\}$ in $\mathcal{A} \bigotimes_{\mathfrak{A}} \mathcal{A}$ is called a module approximate diagonal if $\widetilde{\omega}_{\mathcal{A}}(\widetilde{\xi_j})$ is a bounded approximate identity of \mathcal{A}/J and

$$\lim_{j} \|\xi_j \cdot a - a \cdot \xi_j\| = 0 \quad (a \in \mathcal{A}).$$

An element $\widetilde{E} \in (\mathcal{A}\widehat{\bigotimes}_{\mathfrak{A}}\mathcal{A})^{**}$ is called a module virtual diagonal if

$$\widetilde{\omega}_{\mathcal{A}}^{**}(\widetilde{E}) \cdot a = \widetilde{a}, \quad \widetilde{E} \cdot a = a \cdot \widetilde{E} \quad (a \in \mathcal{A}),$$

where $\widetilde{a} = a + J^{\perp \perp}$.

Assume that **B** is a closed subalgebra and an \mathfrak{A} -submodule of \mathcal{A}^{**} such that $\widehat{\mathcal{A}} \subseteq \mathbf{B}$. Consider the module projective tensor product $\mathbf{B} \bigotimes_{\mathfrak{A}} \mathbf{B}$, that is $\mathbf{B} \bigotimes_{\mathfrak{A}} \mathbf{B} = (\mathbf{B} \bigotimes \mathbf{B})/M_{\mathbf{B}}$, where $M_{\mathbf{B}}$ is a closed ideal generated by elements of the form $\alpha \cdot F \otimes G - F \otimes G \cdot \alpha$, for $\alpha \in \mathfrak{A}, F, G \in \mathbf{B}$. We denote $M_{\mathcal{A}^{**}}$ by M. Also for each α in \mathfrak{A} and F, G in \mathbf{B} , we consider $N_{\mathbf{B}}$ to be the closed ideal of \mathbf{B} generated by $(\alpha \cdot F) \Box G - F \Box (G \cdot \alpha)$. We denote $N_{\mathcal{A}^{**}}$ by N. It is shown in the proof of [2, Theorem 3.4] that the map $\lambda : \mathcal{A}^{**}/N \longrightarrow \mathcal{A}^{**}/J^{\perp\perp}; F + N \mapsto F + J^{\perp\perp}$ is a surjective bounded \mathcal{A} - \mathfrak{A} -module morphism.

Theorem 2.2. Let \mathcal{A}/J be a commutative Banach \mathfrak{A} -module and $\mathbf{B}/N_{\mathbf{B}}$ be a commutative \mathfrak{A} -module (or $N_{\mathbf{B}}$ is w^* -closed) such that $\widehat{\mathcal{A}} \subseteq \mathbf{B}$, then module amenability \mathbf{B} implies module amenability \mathcal{A} .

Proof. It is shown in [2] that there is a continuous linear mapping

$$\Phi_{\mathfrak{A}}: \mathcal{A}^{**}\widehat{\bigotimes}\mathcal{A}^{**}/M \longrightarrow (\mathcal{A}\widehat{\bigotimes}\mathcal{A})^{**}/I^{\perp \perp}$$

such that for $a, b, x \in \mathcal{A}$ and $m \in \mathcal{A}^{**} \bigotimes \mathcal{A}^{**}$ the following equalities hold.

- (1) $\Phi_{\mathfrak{A}}(a \otimes b + M) = a \otimes b + I^{\perp \perp},$
- (2) $\Phi_{\mathfrak{A}}(m+M) \cdot x = \Phi_{\mathfrak{A}}(m \cdot x + M),$
- (3) $x \cdot \Phi_{\mathfrak{A}}(m+M) = \Phi_{\mathfrak{A}}(x \cdot m+M),$
- (4) $\tilde{\omega}_{\mathcal{A}}^{**}(\Phi_{\mathfrak{A}}(m+M)) = \lambda \circ \tilde{\omega}_{\mathcal{A}^{**}}(m+M).$

Consider the linear map $\phi : \mathcal{A}/J \longrightarrow \mathbf{B}/N_{\mathbf{B}}; (a + J \mapsto a + N_{\mathbf{B}})$. It is known that every norm-norm-continuous map is weak*-weak*-continuous. Hence ϕ is weak*-weak*-continuous. We show that $\phi(\mathcal{A}/J)$ is weak*-dense in $\mathbf{B}/N_{\mathbf{B}}$. Let $F \in \mathbf{B}$ and bounded net (a_j) be in \mathcal{A} such that $\hat{a}_j \xrightarrow{w^*} F$. Since $N_{\mathbf{B}} \subseteq \mathbf{B} \subseteq \mathcal{A}^{**},$ $N_{\mathbf{B}}$ has the annihilator ${}^{\perp}N_{\mathbf{B}} = \{f \in \mathcal{A}^* : \langle G, f \rangle = 0 \text{ for all } G \in N_{\mathbf{B}}\}$. We have

$$(^{\perp}N_{\mathbf{B}})^* = \mathbf{B}/(^{\perp}N_{\mathbf{B}})^{\perp} = \mathbf{B}/\overline{N_{\mathbf{B}}}^{w^*} = \mathbf{B}^{**}/N_{\mathbf{B}}.$$

Hence $\mathbf{B}^{**}/N_{\mathbf{B}}$ is a dual algebra. Suppose that f is in ${}^{\perp}N_{\mathbf{B}}$, then $f(a_j) \longrightarrow F(f)$. Since $f \mid_{N_{\mathbf{B}}} = 0$, f lifts to a map, still denoted by f, on $\mathbf{B}^{**}/N_{\mathbf{B}}$. Thus we deduce that $\langle a_j + N_{\mathbf{B}}, f \rangle \longrightarrow \langle F + N_{\mathbf{B}}, f \rangle$. Since \mathcal{A}/J is commutative \mathfrak{A} -module, $\mathbf{B}/N_{\mathbf{B}}$ is also a commutative \mathfrak{A} -module. Also since \mathbf{B} is module amenable, by [5, Corrolary 2.11] $\mathbf{B}/N_{\mathbf{B}}$ has a bounded approximate identity. Hence \mathbf{B} has a module approximate diagonal $\{\widetilde{m_i}\}$ ($\widetilde{m_i} = m_i + M_{\mathbf{B}}$) in $\mathbf{B}\widehat{\bigotimes}_{\mathfrak{A}}\mathbf{B}$ by [1, Theorem 2.1], and so $\widetilde{\omega}_{\mathbf{B}}(\widetilde{m_i})\overline{b} \longrightarrow \overline{b}$ and $\widetilde{m_i} \cdot b - b \cdot \widetilde{m_i} \longrightarrow 0$, where $\overline{b} = b + N_{\mathbf{B}}$ whenever

$b \in \mathbf{B}$. Consider the map

$$T: \mathbf{B}\widehat{\bigotimes}\mathbf{B}/M_{\mathbf{B}} \longrightarrow \mathcal{A}^{**}\widehat{\bigotimes}\mathcal{A}^{**}/M; \quad b_1 \otimes b_2 + M_{\mathbf{B}} \mapsto b_1 \otimes b_2 + M \quad (b_1, b_2 \in \mathbf{B}).$$

Obviously, this map is well-defined and norm decreasing. Set $\Theta = \Phi_{\mathfrak{A}} \circ T$. Now consider the map $\theta : \mathbf{B}/N_{\mathbf{B}} \longrightarrow \mathcal{A}^{**}/N$ defined by $\theta(F + N_{\mathbf{B}}) = F + N$; $(F \in \mathbf{B})$. The map θ is well-defined and continuous homomorphism. From the above equalities, for each $a \in \mathcal{A}$, we have

$$\begin{split} \tilde{\omega}_{\mathcal{A}}^{**}(\Theta(\widetilde{m_i})) \cdot \widetilde{a} &= \tilde{\omega}_{\mathcal{A}}^{**}(\Phi_{\mathfrak{A}}(T(\widetilde{m_i}))) \cdot \widetilde{a} = \lambda \circ \tilde{\omega}_{\mathcal{A}^{**}}(m_i + M) \cdot \widetilde{a} \\ &= \lambda(\theta(\tilde{\omega}_{\mathbf{B}}(\widetilde{m_i}))) \cdot \widetilde{a} = \lambda((\theta(\tilde{\omega}_{\mathbf{B}}(\widetilde{m_i}))) \cdot (a + N)) \\ &= \lambda(\theta(\tilde{\omega}_{\mathbf{B}}(\widetilde{m_i}) \cdot (a + N_{\mathbf{B}}))) \\ &\longrightarrow \lambda(\theta(a + N_{\mathbf{B}})) = \lambda(a + N) = \widetilde{a}, \end{split}$$

and

$$a \cdot \Theta(\widetilde{m_i}) - \Theta(\widetilde{m_i}) \cdot a = a \cdot \Phi_{\mathfrak{A}} \circ T(\widetilde{m_i}) - \Phi_{\mathfrak{A}} \circ T(\widetilde{m_i}) \cdot a$$
$$= a \cdot \Phi_{\mathfrak{A}}(m_i + M) - \Phi_{\mathfrak{A}}(m_i + M) \cdot a$$
$$= \Phi_{\mathfrak{A}}(a \cdot m_i - m_i \cdot a + M)$$
$$= \Phi_{\mathfrak{A}} \circ T(a \cdot \widetilde{m_i} - \widetilde{m_i} \cdot a)$$
$$\longrightarrow 0.$$

Assume that the bounded net $(\Theta(\widetilde{m_i})) \subseteq (\mathcal{A} \widehat{\bigotimes}_{\mathfrak{A}} \mathcal{A})^{**}$ has the w^* -cluster point \widetilde{E} . Hence for each $a \in \mathcal{A}$ we have

$$\widetilde{\omega}_{\mathcal{A}}^{**}(\widetilde{E}) \cdot a = \widetilde{a}, \quad \widetilde{E} \cdot a = a \cdot \widetilde{E}$$

Therefore \widetilde{E} is a module virtual diagonal for \mathcal{A} . Now it follows from [1, Theorem 2.1] that \mathcal{A} is module amenable.

Corollary 2.3. Let \mathcal{A} be a commutative Banach \mathfrak{A} -module. If $\mathcal{Z}_{\mathfrak{A}}^{(1)}(\mathcal{A}^{**})$ or $\mathcal{Z}_{\mathfrak{A}}^{(2)}(\mathcal{A}^{**})$ is module amenable, then \mathcal{A} is module amenable.

Recall that Banach algebra \mathcal{A}^* is said to factor on the left if $\mathcal{A}^* \cdot \mathcal{A} = \mathcal{A}^*$ [26]. Now if \mathcal{A} has a bounded approximate identity and \mathcal{A}^{**} has an identity, \mathcal{A}^* factors on the left [26].

Proposition 2.4. Let \mathcal{A}/J be a commutative Banach \mathfrak{A} -module and \mathcal{A}^{**}/N be commutative \mathfrak{A} -module (or N is w^* -closed). If (\mathcal{A}^{**}, \Box) is module amenable and $\widehat{\mathcal{A}}\Box \mathcal{A}^{**} \subseteq \mathcal{Z}_{\mathfrak{A}}^{(1)}(\mathcal{A}^{**})$, then \mathcal{A} is module Arens regular.

Proof. Since \mathcal{A}/J is a commutative \mathfrak{A} -module and \mathcal{A}^{**} is module amenable, \mathcal{A}^{**}/N has a bounded approximate identity [5, Corrolary 2.11]. Using the map λ , $\mathcal{A}^{**}/^{\perp\perp}$ has a bounded approximate identity, and so has an identity. Also module amenability of \mathcal{A}^{**} implies module amenability of \mathcal{A} [5, Theorem 3.4]. Again from [5, Corrolary 2.11], \mathcal{A}/J has bounded approximate identity. Without loss of generality we may assume that J^{\perp} factors on the left, that is $J^{\perp} \cdot \mathcal{A} = J^{\perp}$. Let $f \in J^{\perp}$ and $F, G \in \mathcal{A}^{**}$. Then there exists $g \in J^{\perp}$ and $a \in \mathcal{A}$ such that $f = g \cdot a$. We have

$$\begin{split} \langle F \Box G, f \rangle &= \langle F \Box G, g \cdot a \rangle = \langle (\widehat{a} \Box F) \Box G, g \rangle \\ &= \langle (\widehat{a} \Box F) \Diamond G, g \rangle = \langle (\widehat{a} \Diamond F) \Diamond G, g \rangle \\ &= \langle F \Diamond G, g \cdot a \rangle = \langle F \Diamond G, f \rangle. \end{split}$$

This complete the proof.

Corollary 2.5. Let \mathcal{A} be a Banach \mathfrak{A} -module and $J^{\perp} \cdot \mathcal{A} = J^{\perp}$. If $\widehat{\mathcal{A}} \Box \mathcal{A}^{**} \subseteq \mathcal{Z}_{\mathfrak{A}}^{(1)}(\mathcal{A}^{**})$, then \mathcal{A} is module Arens regular.

Corollary 2.6. Let \mathcal{A} be a commutative Banach \mathfrak{A} -module. If (\mathcal{A}^{**}, \Box) is module amenable and $\widehat{\mathcal{A}} \Box \mathcal{A}^{**} \subseteq \mathcal{Z}_{\mathfrak{A}}^{(1)}(\mathcal{A}^{**})$, then \mathcal{A} is module Arens regular.

3 Weak Module Amenability

In this section, we define the concept of weak module amenability in a more general context than [3]. The previous definition [3, definition 2.2] works well only when \mathcal{A} is a commutative \mathfrak{A} -module. Throughout this section, we assume that the Banach algebra \mathfrak{A} is commutative unless otherwise stated explicitly. We refer the reader to [12, 24] for more details about the classical notion of weak amenability of Banach algebras.

Definition 3.1. The Banach algebra \mathcal{A} is called weakly module amenable (as an \mathfrak{A} -module) if for any commutative Banach \mathfrak{A} -submodule Y of \mathcal{A}^* , each module derivation from \mathcal{A} to Y is inner.

If $D : \mathcal{A} \longrightarrow Y \subseteq \mathcal{A}^*$ is a module derivation, then for each $\alpha \in \mathfrak{A}$ and $a, c, d \in \mathcal{A}$ we have

$$\langle D(a), \alpha \cdot cd - cd \cdot \alpha \rangle = \langle \alpha \cdot D(a) - D(a) \cdot \alpha, cd \rangle = 0.$$

By continuity of D, we see $D(a) \subseteq J^{\perp}$. Hence D could be considered as a module derivation from \mathcal{A} to $(\mathcal{A}/J)^* = J^{\perp}$ when \mathcal{A}/J is commutative Banach \mathfrak{A} -module. Therefore we have the following result.

Proposition 3.2. If A/J is a commutative Banach \mathfrak{A} -module, then the following are equivalent:

- i) \mathcal{A} is weakly module amenable.
- ii) Every module derivation from \mathcal{A} to $(\mathcal{A}/J)^*$ is inner.

When \mathcal{A} is a commutative \mathfrak{A} -module, then $J = \{0\}$. Hence the above definition is a generalization of [3, definition 2.2]. In fact there exist some Banach algebras which are not commutative module but a quotient of them are commutative module. The following lemma is proved in [2, Lemma 3.1].

Lemma 3.3. Let \mathcal{A} be a Banach algebra and Banach \mathfrak{A} -module with compatible actions, and J_0 be a closed ideal of \mathcal{A} such that $J \subseteq J_0$. If \mathcal{A}/J_0 has a left or right identity $e + J_0$, then for each $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$ we have $a \cdot \alpha - \alpha \cdot a \in J_0$, *i.e.*, \mathcal{A}/J_0 is commutative Banach \mathfrak{A} -module.

Proposition 3.4. Let \mathcal{A} be an \mathfrak{A} -module, and \mathcal{A}/J has an identity. If \mathfrak{A} has a bounded approximate identity for \mathcal{A} , then weak amenability of \mathcal{A}/J implies weak module amenability of \mathcal{A} .

Proof. Suppose that $D : \mathcal{A} \longrightarrow (\mathcal{A}/J)^*$ is a module derivation. Define $D : \mathcal{A}/J \longrightarrow (\mathcal{A}/J)^*$ via $\widetilde{D}(a+J) = D(a)$. For each $\alpha \in \mathfrak{A}$ and $a, b \in \mathcal{A}$ we have

$$D(\alpha \cdot ab - ab \cdot \alpha) = \alpha \cdot D(ab) - D(ab) \cdot \alpha = 0.$$

On the other hand, Since J is a closed ideal, the restriction of D to J is zero. Therefore \tilde{D} is well-defined. For $a, b \in \mathcal{A}$ we have $\tilde{D}((a + J) \pm (b + J)) = \tilde{D}(a + J) \pm \tilde{D}(b + J)$ and $\tilde{D}(ab + J) = \tilde{D}(a + J) \cdot (b + J) + (a + J) \cdot \tilde{D}(b + J)$. We note that if \mathcal{A}/J has identity, then it is always commutative \mathfrak{A} -module (see Lemma 3.3). Suppose that e+J is identity \mathcal{A} and \mathfrak{A} has a bounded approximate identity (γ_i) for \mathcal{A} . for each $\lambda \in \mathbb{C}$ we have

$$\gamma_i \cdot e + J = e \cdot \gamma_i + J = \lambda e \cdot \gamma_i + J,$$

so $(\lambda e) \cdot \gamma_i - \gamma_i \cdot e \longrightarrow \lambda e - e$ in norm. Since J is a closed ideal of $\mathcal{A}, \lambda e - e \in J$.

For $\lambda \in \mathbb{C}, a \in \mathcal{A}$, we have

$$\begin{split} \tilde{D}(\lambda(a+J)) &= \tilde{D}((a+J)(\lambda e+J)) \\ &= (a+J) \cdot \tilde{D}(\lambda e+J) + \tilde{D}(a+J)(\lambda e+J) \\ &= (a+J) \cdot \tilde{D}(e+J) + \lambda \tilde{D}(a+J) \cdot (e+J) \\ &= \lambda \tilde{D}(a+J). \end{split}$$

Thus \tilde{D} is \mathbb{C} -linear, and so it is inner. Thus D is inner.

Now, we prove that the semigroup algebra $\ell^1(S)$ is always $\ell^1(E)$ -module weak amenable, where E is the set of idempotents of S, acting on S trivially from left and by multiplication from right. Throughout this section S is an inverse semigroup with set idempotent E, where the order of E is defined by

$$e \leq d \iff ed = e \quad (e, d \in E).$$

It is easy to show that E is a (commutative) subsemigroup of S [19, Theorem V.1.2]. In particular $\ell^1(E)$ could be regarded as a subalgebra of $\ell^1(S)$, and thereby $\ell^1(S)$ is a Banach algebra and a Banach $\ell^1(E)$ -module with compatible actions [1]. Here we let $\ell^1(E)$ act on $\ell^1(S)$ by multiplication from right and trivially from left, that is

$$\delta_e \cdot \delta_s = \delta_s, \ \delta_s \cdot \delta_e = \delta_{se} = \delta_s * \delta_e \quad (s \in S, e \in E).$$

We see that $\ell^1(S)$ is not commutative $\ell^1(E)$ -module. In this case, the ideal J (see section 2) is the closed linear span of

$$\{\delta_{set} - \delta_{st} \quad s, t \in S, e \in E\}.$$

We consider an equivalence relation on S as follows

$$s \approx t \iff \delta_s - \delta_t \in J \ (s, t \in S).$$

Recall that E is called *upward directed* if for every $e, f \in E$ there exist $g \in E$ such that eg = e and fg = f. This is precisely the assertion that S satisfies the D_1 condition of Duncan and Namioka [14]. It is shown in [2] that if E is upward directed, then the quotient S/\approx is a discrete group. For the semigroup algebra S, as in [27, Theorem 3.3], we may observe that $\ell^1(S)/J \cong \ell^1(S/\approx)$. Also $\ell^1(S)/J$ is a commutative $\ell^1(E)$ -bimodule with the following actions

$$\delta_e \cdot (\delta_s + J) = \delta_s + J, \ (\delta_s + J) \cdot \delta_e = \delta_{se} + J \quad (s \in S, e \in E).$$

Corollary 3.5. Let S be an inverse semigroup with an upward directed set of idempotents E. Then $\ell^1(S)$ is weakly module amenable as an $\ell^1(E)$ -module with trivial left action.

Proof. Since S/\approx is a discrete group, the group algebra $\ell^1(S/\approx)$ has an identity. Also since E satisfies condition D_1 of Duncan and Namioka, $\ell^1(E)$ has a bounded approximate identity for $\ell^1(S)$ [2, 14]. Now the result follows from [21, Theorem] and Proposition 3.4 with $\mathcal{A} = \ell^1(S)$ and $\mathfrak{A} = \ell^1(E)$.

The Banach algebras with compatible \mathfrak{A} -module structure could be considered as objects of a category $\mathfrak{C}_{\mathfrak{A}}$ whose morphisms are bounded \mathfrak{A} -module maps. We are interested in the case where \mathfrak{A} is an injective object in $\mathfrak{C}_{\mathfrak{A}}$, that is for any objects $A, B \in \mathfrak{C}_{\mathfrak{A}}$ and monomorphism $\theta : B \longrightarrow A$ and morphism $\mu : B \longrightarrow \mathfrak{A}$, there exist a morphism $\tilde{\mu} : A \longrightarrow \mathfrak{A}$ such that $\mu = \tilde{\mu} \circ \theta$. This is the case when $\mathfrak{A} = \mathbb{C}$ (Hahn Banach Theorem). It is shown in [3] that if \mathcal{A} is weakly module amenable, then span ($\mathcal{A}\mathfrak{A}\mathcal{A}$) is dense in \mathcal{A} . In the following proposition \mathfrak{A} is not necessarily commutative, but \mathcal{A} is a commutative Banach \mathfrak{A} -module.

Proposition 3.6. Let \mathfrak{A} be injective and has a bounded approximate identity. If \mathcal{A}^{**} is weakly module amenable, then span $(\mathcal{A}\mathfrak{A}\mathcal{A})$ is dense in \mathcal{A} .

Proof. Let $a \in \mathcal{A}$. Since \mathcal{A}^{**} is weakly module amenable, by [3, Proposition 2.4] there exist sequences $(F_n) \subseteq (\mathcal{A}^{**}\mathfrak{A}\mathcal{A}^{**})$ and $(\alpha_n) \subseteq \mathfrak{A}$ such that $\sum_{k=1}^{p(n)} (G_{n,k} \cdot \alpha_{n,k}) \Box H_{n,k}$ and norm-lim $_n F_n = \hat{a}$. using weak*-density of \mathcal{A} in \mathcal{A}^{**} , there exist nets $(a_{n,k,i})$ and $(b_{n,k,j})$ such that $\hat{a}_{n,k,i} \xrightarrow{w^*} G_{n,k}$ and $\hat{b}_{n,k,j} \xrightarrow{w^*} H_{n,k}$. Thus $\hat{a} = \text{weak}^*$ -norm-weak*-lim $(\hat{a}_{n,k,i} \cdot \alpha_n) \Box \hat{b}_{n,k,j}$. Hence \hat{a} belong to weak*-closure $(\mathcal{A}\mathfrak{A}\mathcal{A})$, and so a is in weak closure of $(\mathcal{A}\mathfrak{A}\mathcal{A})$. Therefore a is in the weak closure of span $(\mathcal{A}\mathfrak{A}\mathcal{A})$. Now the result follows from convexity of span $(\mathcal{A}\mathfrak{A}\mathcal{A})$. \Box

We say the Banach algebra \mathfrak{A} acts trivially on \mathcal{A} from left (right) if for each $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$, $\alpha \cdot a = f(\alpha)a$ ($a \cdot \alpha = f(\alpha)a$), where f is a continuous linear functional on \mathfrak{A} . Now if \mathfrak{A} acts on \mathcal{A} trivially from left and \mathcal{A}/J has a bounded approximate identity, then for each $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$ we have $f(\alpha)a - \alpha \cdot a \in J$ [28, lemma 5.8].

Proposition 3.7. Let \mathcal{A} be a Banach \mathfrak{A} -module with trivial left action and \mathcal{A}/J be a commutative \mathfrak{A} -module (or \mathcal{A}/J has a bounded approximate identity) and also \mathcal{A}^{**}/N be commutative \mathfrak{A} -module (or N is w^* -closed). If \mathcal{A}^{**} is weakly module amenable, then $\mathcal{A}^{**}/J^{\perp\perp}$ is weakly amenable.

Proof. Assume that $D: \mathcal{A}^{**}/J^{\perp\perp} \longrightarrow (\mathcal{A}^{**}/J^{\perp\perp})^*$ is a derivation. The image of $G \Box F$ in $(\mathcal{A}^{**}/J^{\perp\perp}, \Box)$ is $G \Box F + J^{\perp\perp}$. Obviously, \mathcal{A}^{**}/N is a \mathcal{A}^{**} -bimodule, with module actions given by

$$G \cdot (F+N) := G \Box F + J^{\perp \perp}, \quad (F+N) \cdot G := F \Box G + J^{\perp \perp}, \quad (F, G \in \mathcal{A}^{**}).$$

Let N be w*-closed. Since \mathcal{A}/J is commutative \mathfrak{A} -module, then it follows from the proof of Theorem 2.2 that \mathcal{A}^{**}/N is a commutative \mathfrak{A} -module. Consider \tilde{D} : $\mathcal{A}^{**} \longrightarrow (\mathcal{A}^{**}/N)^*$, defined by $\langle \tilde{D}(F), G+N \rangle := \langle D(F+J^{\perp\perp}), G+J^{\perp\perp} \rangle$ $(F, G \in \mathcal{A}^{**})$. It is easy to show that, for F and G in \mathcal{A}^{**} , we have

$$\tilde{D}(F \pm G) = \tilde{D}(F) \pm \tilde{D}(G), \quad \tilde{D}(F \Box G) = \tilde{D}(F) \cdot G + F \cdot \tilde{D}(G).$$

Also for $\alpha \in \mathfrak{A}$, we have

$$\begin{split} \langle \tilde{D}(F \cdot \alpha), G + N \rangle &= \langle D(F \cdot \alpha + J^{\perp \perp}), G + J^{\perp \perp} \rangle \\ &= \langle D(f(\alpha)F + J^{\perp \perp}), G + J^{\perp \perp} \rangle \\ &= \langle \tilde{D}(F) \cdot \alpha, G + N \rangle. \end{split}$$

Note that we have used Lemma 3.3 in the second equality. On the other hand, since the left \mathfrak{A} -module action on \mathcal{A} is trivial, $\tilde{D}(\alpha \cdot F) = \alpha \cdot \tilde{D}(F)$. Hence \tilde{D} is a module derivation. Therefore there exist $\Phi \in (\mathcal{A}^{**}/N)^*$ such that $\tilde{D}(F) = F \cdot \Phi - \Phi \cdot F$, for all $F \in \mathcal{A}^{**}$. Consider the canonical embedding $j: (\mathcal{A}/J)^* \longrightarrow (\mathcal{A}^{**}/J^{\perp\perp})^*$. Put $\Psi = j \circ \phi^*(\Phi)$, then for each F and G in \mathcal{A}^{**} , we have

$$\begin{split} \langle D(F+J^{\perp\perp}), G+J^{\perp\perp} \rangle &= \langle \tilde{D}(F), G+N \rangle \\ &= \langle F \cdot \Phi - \Phi \cdot F, G+N \rangle \\ &= \langle \Phi, G \Box F + F \Box G + N \rangle \\ &= \langle \phi^*(\Phi), \lambda (G \Box F + F \Box G + N) \rangle \\ &= \langle \lambda (G \Box F + F \Box G + N), \Phi \circ \phi \rangle \\ &= \langle j(\Phi \circ \phi), G \Box F + F \Box G + J^{\perp\perp} \rangle \\ &= \langle \Psi, G \Box F + F \Box G + J^{\perp\perp} \rangle \\ &= \langle (F+J^{\perp\perp}) \cdot \Psi - \Psi \cdot (F+J^{\perp\perp}), G+J^{\perp\perp} \rangle. \end{split}$$

Corollary 3.8. Let \mathcal{A} be a Banach \mathfrak{A} -module with trivial left action and \mathcal{A}/J be a commutative \mathfrak{A} -module. If one of the following conditions hold

(i) \mathcal{A}/J is a left ideal in $\mathcal{A}^{**}/J^{\perp\perp}$.

(ii) \mathcal{A}/J is a dual Banach algebra.

(iii) \mathcal{A}/J is Arens regular and every derivation from \mathcal{A}/J into J^{\perp} is weakly compact.

Then weak module amenability \mathcal{A}^{**} implies weak module amenability \mathcal{A} .

Proof. This is a consequence of Propositions 3.4 and 3.7, and [17, Theorem 2.3], [16, Theorem 2.2], and [13, Corollary 7.5] for the parts (i), (ii), and (iii), respectively.

References

- M. Amini, Module amenability for semigroup algebras, Semigroup Forum, 69(2004), 243–254.
- [2] M. Amini, A. Bodaghi and D. Ebrahimi Bagha, Module amenability of the second dual and module topological center of semigroup algebras, *Semigroup Forum*, 80(2010), 302–312.
- [3] M. Amini and D. Ebrahimi Bagha, Weak module amenability for semigroup algebras, Semigroup Forum, 71(2005), 18–26.
- [4] W.G. Bade, P.C. Curtis and H.G. Dales, Amenability and weak amenability for Beurling and Lipschits algebra, *Proc. London Math. Soc.*, 55(3)(1987), 359–377.
- [5] A. Bodaghi and M. Amini, Module biprojective and module biflat Banach algebras, arxiv:0912.4005 V1.
- [6] A. Bodaghi, M. Ettefagh, M. Eshaghi Gordji and A.R. Medghalchi, Module structure on iterated duals of Banach algebras, An. St. Univ. Ovidius Constanta., 18(1)(2010), 63–80.
- [7] A. Bodaghi, M. Eshaghi Gordji and A.R. Medghalchi, A generalization of the weak amenability of Banach algebras, B. J. Math. Anal., 3(1)(2009), 131–142.
- [8] F.F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, Berlin-Heidelberg-New York, 1973.

- [9] H.G. Dales, Banach Algebras and Automatic Continuity, Oxford University Press, Oxford, 2000.
- [10] H.G. Dales, F. Ghahramani and N. Grønbæk, Derivations into iterated duals of Banach algebras, *Stud. Math.*, **128**(1)(1998), 19–54.
- [11] H.G. Dales and A.T.-M. Lau, The second duals of Buerling algebras, Mem. Amer. Math. Soc., 177(836)(2005).
- [12] H.G. Dales, A.T.-M. Lau and D. Strauss, Banach algebras on semigroups and their compactification, *Mem. Amer. Math. Soc.*, **205**(966)(2010).
- [13] H.G. Dales, A. Rodriguez-Palacios and M.V. Velasco, The second transpose of a derivation, J. London Math. Soc., 64(2)(2001), 707–721.
- [14] J. Duncan and I. Namioka, Amenability of inverse semigroups and their semigroup algebras, Proc. Roy. Soc. Edinburgh, 80A(1988), 309–321.
- [15] M. Eshaghi Gordji and M. Filali, Weak amenability of the second dual of a Banach algebra, *Studia Math.*, 182(3)(2007), 205–213.
- [16] F. Ghahramani and J. Laali, Amenability and topological center of the second duals of Banach algebras, Bull. Austral. Math. Soc., 65(2002), 191–197.
- [17] F. Ghahramani, R.J. Loy and G.A. Willis, Amenability and weak amenability of second cojugate Banach algebras, *Proc. Amer. Math. Soc.*, **124**(1996), 1489–1497.
- [18] F. Gourdeau, Amenability and the second dual of a Banach algebras, Studia Math., 125(1997), 75–81.
- [19] J.M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976.
- B.E. Johnson, Cohomology in Banach algebras, Memoirs Amer. Math. Soc., 127(1972), American Mathematical Society, Providence.
- [21] B.E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc., 23(3)(1991), 281–284.
- [22] B.E. Johnson, Derivation from $L^1(G)$ into $L^1(G)$ and $L^{\infty}(G)$. In: J.P. Pier (ed.), *Harmonic Analysis* (Luxembourg, 1987), pp. 191–198, Springer-Verlag, 1998.

- [23] A.T.-M. Lau and V. Losert, On second conjugate algebra of $L_1(G)$ of a locally compact group, J. London Math. Soc., **37**(3)(1988), 464–470.
- [24] A.T.-M. Lau and R. Loy, Weak amenability of Banach algebras on locally compact groups, J. Func. Anal., 245(1997), 175–204.
- [25] A.L.T. Paterson, Groupoids, Inverse Semigroups, and Their Operator Algebras, Birkhäuser, Boston, 1999.
- [26] C. Read, Relative amenability and the non-amenability of $B(\ell^1)$, J. Aust. Math. Soc., 80(2006), 317–333.
- [27] R. Rezavand, M. Amini, M.H. Sattari and D. Ebrahimi Bagha, Module Arens regularity for semigroup algebras, *Semigroup Forum*, 77(2008), 300–305.
- [28] R. Rezavand and M. Amini, Module operator amenability of the Fourier algebra of an inverse semigroup, *preprint*.
- [29] M.A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Funct. Anal., 1(1967), 443–491.
- [30] V. Runde, *Lectures on Amenability*, Lecture Notes in Mathematics 1774, Springer-Verlag, Berlin-Heidelberg-New York, 2002.

Massoud Amini Department of Mathematics Tarbiat Modares University Tehran 14115-175, Iran Email: mamini@modares.ac.ir Abasalt Bodaghi Department of Mathematics Islamic Azad University Garmsar Branch, Garmsar, Iran Email: abasalt.bodaghi@gmail.com