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Abstract: In this paper we define the weak module amenability of a Banach alge-

bra A which is a Banach module over another Banach algebra A with compatible

actions, and show that under some mild conditions weak module amenability of

A∗∗ implies weak module amenability of A . Also among other results, we in-

vestigate the relation between module Arens regularity of a Banach algebra and

module amenability of its second dual. As a consequence we prove that `1(S)

is always weakly module amenable (as an `1(E)-module), where S is an inverse

semigroup with an upward directed set of idempotents E .
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1 Introduction

A Banach algebra A is amenable if every bounded derivation from A into any dual

Banach A -module is inner, equivalently if H1(A,X∗) = {0} for every Banach A -

module X , where H1(A,X∗) is the first Hochschild cohomology group of A with
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coefficients in X∗ . This concept was introduced by Barry Johnson in [20]. The

notion of weak amenability was introduced by W. G. Bade, P. C. Curtis and H.

G. Dales in [4] for commutative Banach algebras. Later Johnson defined weak

amenability for arbitrary Banach algebras [22]. In fact a Banach algebra A is

weakly amenable if H1(A,A∗) = {0} .

Let A be a Banach algebra and A∗∗ be the second dual of A . It is known

that the Banach algebra A inherits amenability from A∗∗ [18] (see also [17]).

The first author in [1] introduced the concept of module amenability for Banach

algebras which are Banach modules on another Banach algebra with compatible

actions. This could be considered as a generalization of the Johnson’s amenability.

It is shown in [2] that if A is a commutative Banach A-module such that A∗∗

is A-module amenable, then A is module amenable. The authors improved this

result for the concept of module biflatness in [5], by assuming a weaker condition

on A .

The analogous result for weak amenability is not known in general, but it is

known to hold for Banach algebras A which are left ideal in A∗∗ [17] (see also [7]),

the dual Banach algebras [16], the Banach algebras A which are Arens regular and

every derivation from A into A∗ is weakly compact [13], Banach algebras for which

the second adjoint of each derivation D : A → A∗ satisfies D′′(A∗∗) ⊆ WAP(A),

and Banach algebras A which are right ideals in A∗∗ and satisfy A∗∗A = A∗∗

[15]. For the latter case, using the concept of module structures on iterated duals,

an alternative proof is given in [6].

A discrete semigroup S is called amenable if there exists a mean m on `∞(S)

which is both left and right invariant (see [14]). An inverse semigroup is a discrete

semigroup S such that for each s ∈ S , there is a unique element s∗ ∈ S with

ss∗s = s and s∗ss∗ = s∗ . Elements of the form ss∗ are called idempotents of S .

For an inverse semigroup S , a left invariant mean on `∞(S) is right invariant and

vise versa.

Amini and Ebrahimi Bagha in [3] defined the concept of weak module amenabil-

ity for a Banach algebra which is a commutative Banach module over another Ba-

nach algebra and showed that if S is commutative semigroup with the set of idem-

potents E , under a natural action, `1(S) is always weak `1(E)-module amenable.

In this paper we define weak module amenability in a more general context, for a

Banach algebra which is not necessarily a commutative Banach module, and show

that if S is an inverse semigroup with an upward directed set of idempotents E ,

then `1(S) as an `1(E)-module is weak module amenable. This could be con-
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sidered as the module version (for inverse semigroups) of a result of Johnson [21]

which asserts that for any locally compact group G , the group algebra L1(G) is

weakly amenable.

We also prove that when A acts trivially on A from left, then under some mild

conditions, weak module amenability A∗∗ implies weak amenability A∗∗/J⊥⊥ ,

where J is the closed ideal of A generated by α · (ab) − (ab) · α for all a ∈ A

and α ∈ A . As a consequence we show that under some conditions on the Banach

algebra A/J , weak module amenability of A∗∗ implies weak module amenability

of A . Finally, we find a relation between module Arens regularity of a Banach

algebra A with module topological centers and module amenability of A∗∗ .

2 Module Amenability

Throughout this paper, A and A are Banach algebras such that A is a Banach

A-bimodule with compatible actions, that is

α · (ab) = (α · a)b, (ab) · α = a(b · α) (a, b ∈ A, α ∈ A).

Let X be a Banach A -bimodule and a Banach A-bimodule with compatible ac-

tions, that is

α·(a·x) = (α·a)·x, a·(α·x) = (a·α)·x, (α·x)·a = α·(x·a) (a ∈ A, α ∈ A, x ∈ X)

and the same for the right or two-sided actions. Then we say that X is a Banach

A -A-module. If moreover

α · x = x · α (α ∈ A, x ∈ X)

then X is called a commutative A -A-module. If X is a (commutative) Banach

A -A-module, then so is X∗ , where the actions of A and A on X∗ are defined by

〈α · f, x〉 = 〈f, x · α〉, 〈a · f, x〉 = 〈f, x · a〉 (a ∈ A, α ∈ A, x ∈ X, f ∈ X∗)

and the same for the right actions. Let Y be another A -A-module, then a A -

A-module morphism from X to Y is a norm-continuous map ϕ : X −→ Y with

ϕ(x ± y) = ϕ(x) ± ϕ(y) and

ϕ(α · x) = α · ϕ(x), ϕ(x · α) = ϕ(x) · α, ϕ(a · x) = a · ϕ(x), ϕ(x · a) = ϕ(x) · a,

for x, y ∈ X, a ∈ A, and α ∈ A .
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Note that when A acts on itself by algebra multiplication, it is not in general

a Banach A -A-module, as we have not assumed the compatibility condition

a · (α · b) = (a · α) · b (α ∈ A, a, b ∈ A).

If A is a commutative A-module and acts on itself by multiplication from both

sides, then it is also a Banach A -A-module.

Consider the projective tensor product A
⊗̂

A . It is well known that A
⊗̂

A is

a Banach algebra with respect to the canonical multiplication map defined by

(a ⊗ b)(c ⊗ d) = (ac ⊗ bd)

and extended by bi-linearity and continuity [9]. Then A
⊗̂

A is a Banach A -

A-module with canonical actions. Let I be the closed ideal of the projective

tensor product A
⊗̂

A generated by elements of the form α · a ⊗ b − a ⊗ b · α for

α ∈ A, a, b ∈ A . Consider the map ω ∈ L(A
⊗̂

A,A) defined by ω(a⊗b) = ab and

extended by linearity and continuity. Let J be the closed ideal of A generated by

ω(I). Then the module projective tensor product A
⊗̂

A
A ∼= (A

⊗̂
A)/I and the

quotient Banach algebra A/J are Banach A-modules with compatible actions.

We have (A
⊗̂

A
A)∗ = LA(A,A∗) where the right hand side is the space of all A-

module morphism from A to A∗ [29]. Also the map ω̃ ∈ L(A
⊗̂

A
A,A/J) defined

by ω̃(a ⊗ b + I) = ab + J extends to an A-module morphism.

Let A and A be as in the above and X be a Banach A -A-module. Let I and

J be the corresponding closed ideals of A
⊗̂

A and A , respectively. A bounded

map D : A −→ X is called a module derivation if

D(a ± b) = D(a) ± D(b), D(ab) = D(a) · b + a · D(b) (a, b ∈ A),

and

D(α · a) = α · D(a), D(a · α) = D(a) · α (a ∈ A, α ∈ A).

Although D is not necessary linear, but still its boundedness implies its norm

continuity (since it preserves subtraction). When X is commutative A -A-module,

each x ∈ X defines a module derivation

Dx(a) = a · x − x · a (a ∈ A).

These are called inner module derivations. The Banach algebra A is called module

amenable (as an A-module) if for any commutative Banach A -A-module X , each

module derivation D : A −→ X∗ is inner [1].
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Let ¤ and ♦ be the first and second Arens products on the second dual space

A∗∗ , then A∗∗ is a Banach algebra with respect to both of these products. When

these two products coincide on A∗∗ , we say that A is Arens regular, and when they

coincide only on A we say that A is strongly Arens irregular. Closed subalgebras

of the algebra B(H) of bounded operators on a Hilbert space H are Arens regular,

whereas the group algebra L1(G) of a locally compact group G is strongly Arens

irregular [11, 23].

The first module topological center of A∗∗ (as an A-module) is

Z
(1)
A

(A∗∗) = {G ∈ A∗∗ : F −→ G¤F is σ(A∗∗, J⊥)-continuous}.

It is shown in [2] that

Z
(1)
A

(A∗∗) = {G ∈ A∗∗ : G¤F − G♦F ∈ J⊥⊥ ∀F ∈ A∗∗}.

Also, like in the classic case, we can define the second module topological center of

A∗∗ by

Z
(2)
A

(A∗∗) = {G ∈ A∗∗ : F −→ F♦G is σ(A∗∗, J⊥)-continuous}.

It is shown in [2, Proposition 2.2], A is module Arens regular if and only if

Z
(1)
A

(A∗∗) = A∗∗ , or equivalently Z
(2)
A

(A∗∗) = A∗∗ . Also Z
(1)
A

(A∗∗) and Z
(1)
A

(A∗∗)

are σ(A∗∗, J⊥)-closed subalgebras of (A∗∗,¤) containing A . Now suppose that

A is a commutative Banach A-module, then J⊥⊥ = 0. Hence for each α in A

and F,G in B , we have f¤G = G♦F for all F ∈ A∗∗ . Thus

(α · G)¤F = α · (G♦F ) = α · (G♦F ) = (α · G)♦F ) (F ∈ A∗∗).

Therefore Z
(1)
A

(A∗∗) is an A-submodule of A∗∗ . Similarly, for Z
(2)
A

(A∗∗).

Definition 2.1. [1] A bounded net {ξ̃j} in A
⊗̂

A
A is called a module approximate

diagonal if ω̃A(ξ̃j) is a bounded approximate identity of A/J and

lim
j

‖ξj · a − a · ξj‖ = 0 (a ∈ A).

An element Ẽ ∈ (A
⊗̂

A
A)∗∗ is called a module virtual diagonal if

ω̃∗∗
A (Ẽ) · a = ã, Ẽ · a = a · Ẽ (a ∈ A),

where ã = a + J⊥⊥ .
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Assume that B is a closed subalgebra and an A-submodule of A∗∗ such that

Â ⊆ B . Consider the module projective tensor product B
⊗̂

A
B , that is B

⊗̂
A
B =

(B
⊗̂

B)/MB , where MB is a closed ideal generated by elements of the form

α ·F ⊗G−F ⊗G ·α , for α ∈ A, F,G ∈ B . We denote MA∗∗ by M . Also for each

α in A and F,G in B , we consider NB to be the closed ideal of B generated

by (α · F )¤G − F¤(G · α). We denote NA∗∗ by N . It is shown in the proof of

[2, Theorem 3.4] that the map λ : A∗∗/N −→ A∗∗/J⊥⊥;F + N 7→ F + J⊥⊥ is a

surjective bounded A -A-module morphism.

Theorem 2.2. Let A/J be a commutative Banach A-module and B/NB be a

commutative A-module (or NB is w∗ -closed) such that Â ⊆ B , then module

amenability B implies module amenability A .

Proof. It is shown in [2] that there is a continuous linear mapping

ΦA : A∗∗
⊗̂

A∗∗/M −→ (A
⊗̂

A)∗∗/I⊥⊥

such that for a, b, x ∈ A and m ∈ A∗∗
⊗̂

A∗∗ the following equalities hold.

(1) ΦA(a ⊗ b + M) = a ⊗ b + I⊥⊥ ,

(2) ΦA(m + M) · x = ΦA(m · x + M),

(3) x · ΦA(m + M) = ΦA(x · m + M),

(4) ω̃∗∗
A

(ΦA(m + M)) = λ ◦ ω̃A∗∗(m + M).

Consider the linear map φ : A/J −→ B/NB; (a + J 7→ a + NB). It is known

that every norm-norm-continuous map is weak∗ -weak∗ -continuous. Hence φ is

weak∗ -weak∗ -continuous. We show that φ(A/J) is weak∗ -dense in B/NB . Let

F ∈ B and bounded net (aj) be in A such that âj
w∗

−→ F . Since NB ⊆ B ⊆ A∗∗ ,

NB has the annihilator ⊥NB = {f ∈ A∗ : 〈G, f〉 = 0 for all G ∈ NB} . We have

(⊥NB)∗ = B/(⊥NB)⊥ = B/NB

w∗

= B∗∗/NB.

Hence B∗∗/NB is a dual algebra. Suppose that f is in ⊥NB , then f(aj) −→

F (f). Since f |NB
= 0, f lifts to a map, still denoted by f , on B∗∗/NB . Thus we

deduce that 〈aj +NB, f〉 −→ 〈F +NB, f〉 . Since A/J is commutative A-module,

B/NB is also a commutative A-module. Also since B is module amenable, by

[5, Corrolary 2.11] B/NB has a bounded approximate identity. Hence B has a

module approximate diagonal {m̃i} (m̃i = mi + MB ) in B
⊗̂

A
B by [1, Theorem

2.1], and so ω̃B(m̃i)b −→ b and m̃i · b− b · m̃i −→ 0, where b = b + NB whenever
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b ∈ B . Consider the map

T : B
⊗̂

B/MB −→ A∗∗
⊗̂

A∗∗/M ; b1 ⊗ b2 + MB 7→ b1 ⊗ b2 + M (b1, b2 ∈ B).

Obviously, this map is well-defined and norm decreasing. Set Θ = ΦA ◦ T . Now

consider the map θ : B/NB −→ A∗∗/N defined by θ(F + NB) = F + N ; (F ∈

B). The map θ is well-defined and continuous homomorphism. From the above

equalities, for each a ∈ A , we have

ω̃∗∗
A (Θ(m̃i)) · ã = ω̃∗∗

A (ΦA(T (m̃i))) · ã = λ ◦ ω̃A∗∗(mi + M) · ã

= λ(θ(ω̃B(m̃i))) · ã = λ((θ(ω̃B(m̃i))) · (a + N))

= λ(θ(ω̃B(m̃i) · (a + NB)))

−→ λ(θ(a + NB)) = λ(a + N) = ã,

and

a · Θ(m̃i) − Θ(m̃i) · a = a · ΦA ◦ T (m̃i) − ΦA ◦ T (m̃i) · a

= a · ΦA(mi + M) − ΦA(mi + M) · a

= ΦA(a · mi − mi · a + M)

= ΦA ◦ T (a · m̃i − m̃i · a)

−→ 0.

Assume that the bounded net (Θ(m̃i)) ⊆ (A
⊗̂

A
A)∗∗ has the w∗ -cluster point

Ẽ . Hence for each a ∈ A we have

ω̃∗∗
A (Ẽ) · a = ã, Ẽ · a = a · Ẽ

Therefore Ẽ is a module virtual diagonal for A . Now it follows from [1,

Theorem 2.1] that A is module amenable.

Corollary 2.3. Let A be a commutative Banach A-module. If Z
(1)
A

(A∗∗) or

Z
(2)
A

(A∗∗) is module amenable, then A is module amenable.

Recall that Banach algebra A∗ is said to factor on the left if A∗ · A = A∗

[26]. Now if A has a bounded approximate identity and A∗∗ has an identity, A∗

factors on the left [26].

Proposition 2.4. Let A/J be a commutative Banach A-module and A∗∗/N be

commutative A-module (or N is w∗ -closed). If (A∗∗,¤) is module amenable and

Â¤A∗∗ ⊆ Z
(1)
A

(A∗∗) , then A is module Arens regular.
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Proof. Since A/J is a commutative A-module and A∗∗ is module amenable,

A∗∗/N has a bounded approximate identity [5, Corrolary 2.11]. Using the map λ ,

A∗∗/⊥⊥ has a bounded approximate identity, and so has an identity. Also module

amenability of A∗∗ implies module amenability of A [5, Theorem 3.4]. Again

from [5, Corrolary 2.11], A/J has bounded approximate identity. Without loss of

generality we may assume that J⊥ factors on the left, that is J⊥ · A = J⊥ . Let

f ∈ J⊥ and F,G ∈ A∗∗ . Then there exists g ∈ J⊥ and a ∈ A such that f = g ·a .

We have

〈F¤G, f〉 = 〈F¤G, g · a〉 = 〈(â¤F )¤G, g〉

= 〈(â¤F )♦G, g〉 = 〈(â♦F )♦G, g〉

= 〈F♦G, g · a〉 = 〈F♦G, f〉.

This complete the proof.

Corollary 2.5. Let A be a Banach A-module and J⊥ · A = J⊥ . If Â¤A∗∗ ⊆

Z
(1)
A

(A∗∗) , then A is module Arens regular.

Corollary 2.6. Let A be a commutative Banach A-module. If (A∗∗,¤) is module

amenable and Â¤A∗∗ ⊆ Z
(1)
A

(A∗∗) , then A is module Arens regular.

3 Weak Module Amenability

In this section, we define the concept of weak module amenability in a more general

context than [3]. The previous definition [3, definition 2.2] works well only when

A is a commutative A-module. Throughout this section, we assume that the

Banach algebra A is commutative unless otherwise stated explicitly. We refer the

reader to [12, 24] for more details about the classical notion of weak amenability

of Banach algebras.

Definition 3.1. The Banach algebra A is called weakly module amenable (as an

A-module) if for any commutative Banach A-submodule Y of A∗ , each module

derivation from A to Y is inner.

If D : A −→ Y ⊆ A∗ is a module derivation, then for each α ∈ A and

a, c, d ∈ A we have

〈D(a), α · cd − cd · α〉 = 〈α · D(a) − D(a) · α, cd〉 = 0.
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By continuity of D , we see D(a) ⊆ J⊥ . Hence D could be considered as a

module derivation from A to (A/J)∗ = J⊥ when A/J is commutative Banach

A-module. Therefore we have the following result.

Proposition 3.2. If A/J is a commutative Banach A-module, then the following

are equivalent:

i) A is weakly module amenable.

ii) Every module derivation from A to (A/J)∗ is inner.

When A is a commutative A-module, then J = {0} . Hence the above def-

inition is a generalization of [3, definition 2.2]. In fact there exist some Banach

algebras which are not commutative module but a quotient of them are commu-

tative module. The following lemma is proved in [2, Lemma 3.1].

Lemma 3.3. Let A be a Banach algebra and Banach A-module with compatible

actions, and J0 be a closed ideal of A such that J ⊆ J0 . If A/J0 has a left or

right identity e + J0 , then for each α ∈ A and a ∈ A we have a · α − α · a ∈ J0 ,

i.e., A/J0 is commutative Banach A-module.

Proposition 3.4. Let A be an A-module, and A/J has an identity. If A has a

bounded approximate identity for A , then weak amenability of A/J implies weak

module amenability of A .

Proof. Suppose that D : A −→ (A/J)∗ is a module derivation. Define D̃ :

A/J −→ (A/J)∗ via D̃(a + J) = D(a). For each α ∈ A and a, b ∈ A we have

D(α · ab − ab · α) = α · D(ab) − D(ab) · α = 0.

On the other hand, Since J is a closed ideal, the restriction of D to J is zero.

Therefore D̃ is well-defined. For a, b ∈ A we have D̃((a + J) ± (b + J)) =

D̃(a + J) ± D̃(b + J) and D̃(ab + J) = D̃(a + J) · (b + J) + (a + J) · D̃(b + J).

We note that if A/J has identity, then it is always commutative A-module (see

Lemma 3.3). Suppose that e+J is identity A and A has a bounded approximate

identity (γi) for A . for each λ ∈ C we have

γi · e + J = e · γi + J = λe · γi + J,

so (λe) · γi − γi · e −→ λe− e in norm. Since J is a closed ideal of A , λe− e ∈ J .
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For λ ∈ C, a ∈ A , we have

D̃(λ(a + J)) = D̃((a + J)(λe + J))

= (a + J) · D̃(λe + J) + D̃(a + J)(λe + J)

= (a + J) · D̃(e + J) + λD̃(a + J) · (e + J)

= λD̃(a + J).

Thus D̃ is C -linear, and so it is inner. Thus D is inner.

Now, we prove that the semigroup algebra `1(S) is always `1(E)-module weak

amenable, where E is the set of idempotents of S , acting on S trivially from

left and by multiplication from right. Throughout this section S is an inverse

semigroup with set idempotent E , where the order of E is defined by

e ≤ d ⇐⇒ ed = e (e, d ∈ E).

It is easy to show that E is a (commutative) subsemigroup of S [19, Theorem

V.1.2]. In particular `1(E) could be regarded as a subalgebra of `1(S), and thereby

`1(S) is a Banach algebra and a Banach `1(E)-module with compatible actions

[1]. Here we let `1(E) act on `1(S) by multiplication from right and trivially from

left, that is

δe · δs = δs, δs · δe = δse = δs ∗ δe (s ∈ S, e ∈ E).

We see that `1(S) is not commutative `1(E)-module. In this case, the ideal J

(see section 2) is the closed linear span of

{δset − δst s, t ∈ S, e ∈ E}.

We consider an equivalence relation on S as follows

s ≈ t ⇐⇒ δs − δt ∈ J (s, t ∈ S).

Recall that E is called upward directed if for every e, f ∈ E there exist g ∈ E

such that eg = e and fg = f . This is precisely the assertion that S satisfies the

D1 condition of Duncan and Namioka [14]. It is shown in [2] that if E is upward

directed, then the quotient S/≈ is a discrete group. For the semigroup algebra S ,

as in [27, Theorem 3.3], we may observe that `1(S)/J ∼= `1(S/ ≈). Also `1(S)/J

is a commutative `1(E)-bimodule with the following actions

δe · (δs + J) = δs + J, (δs + J) · δe = δse + J (s ∈ S, e ∈ E).
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Corollary 3.5. Let S be an inverse semigroup with an upward directed set of

idempotents E . Then `1(S) is weakly module amenable as an `1(E)-module with

trivial left action.

Proof. Since S/≈ is a discrete group, the group algebra `1(S/ ≈) has an identity.

Also since E satisfies condition D1 of Duncan and Namioka, `1(E) has a bounded

approximate identity for `1(S) [2, 14]. Now the result follows from [21, Theorem]

and Proposition 3.4 with A = `1(S) and A = `1(E).

The Banach algebras with compatible A-module structure could be considered

as objects of a category CA whose morphisms are bounded A-module maps. We

are interested in the case where A is an injective object in CA , that is for any

objects A,B ∈ CA and monomorphism θ : B −→ A and morphism µ : B −→ A ,

there exist a morphism µ̃ : A −→ A such that µ = µ̃ ◦ θ . This is the case when

A = C (Hahn Banach Theorem). It is shown in [3] that if A is weakly module

amenable, then span (AAA) is dense in A . In the following proposition A is not

necessarily commutative, but A is a commutative Banach A-module.

Proposition 3.6. Let A be injective and has a bounded approximate identity. If

A∗∗ is weakly module amenable, then span (AAA) is dense in A .

Proof. Let a ∈ A . Since A∗∗ is weakly module amenable, by [3, Proposition 2.4]

there exist sequences (Fn) ⊆ (A∗∗AA∗∗) and (αn) ⊆ A such that
∑p(n)

k=1 (Gn,k ·

αn,k)¤Hn,k and norm-limn Fn = â . using weak∗ -density of A in A∗∗ , there exist

nets (an,k,i) and (bn,k,j) such that ân,k,i
w∗

−→ Gn,k and b̂n,k,j
w∗

−→ Hn,k . Thus

â = weak∗ -norm-weak∗ - lim(ân,k,i ·αn)¤b̂n,k,j . Hence â belong to weak∗ -closure

(AAA), and so a is in weak closure of (AAA). Therefore a is in the weak closure

of span (AAA). Now the result follows from convexity of span (AAA).

We say the Banach algebra A acts trivially on A from left (right) if for each

α ∈ A and a ∈ A , α · a = f(α)a (a · α = f(α)a), where f is a continuous linear

functional on A . Now if A acts on A trivially from left and A/J has a bounded

approximate identity, then for each α ∈ A and a ∈ A we have f(α)a−α·a ∈ J [28,

lemma 5.8].

Proposition 3.7. Let A be a Banach A-module with trivial left action and A/J

be a commutative A-module (or A/J has a bounded approximate identity) and

also A∗∗/N be commutative A-module (or N is w∗ -closed). If A∗∗ is weakly

module amenable, then A∗∗/J⊥⊥ is weakly amenable.
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Proof. Assume that D : A∗∗/J⊥⊥ −→ (A∗∗/J⊥⊥)∗ is a derivation. The image of

G¤F in (A∗∗/J⊥⊥,¤) is G¤F + J⊥⊥ . Obviously, A∗∗/N is a A∗∗ -bimodule,

with module actions given by

G · (F + N) := G¤F + J⊥⊥, (F + N) · G := F¤G + J⊥⊥, (F,G ∈ A∗∗).

Let N be w∗ -closed. Since A/J is commutative A-module, then it follows from

the proof of Theorem 2.2 that A∗∗/N is a commutative A-module. Consider D̃ :

A∗∗ −→ (A∗∗/N)∗ , defined by 〈D̃(F ), G+N〉 := 〈D(F +J⊥⊥), G+J⊥⊥〉 (F,G ∈

A∗∗). It is easy to show that, for F and G in A∗∗ , we have

D̃(F ± G) = D̃(F ) ± D̃(G), D̃(F¤G) = D̃(F ) · G + F · D̃(G).

Also for α ∈ A , we have

〈D̃(F · α), G + N〉 = 〈D(F · α + J⊥⊥), G + J⊥⊥〉

= 〈D(f(α)F + J⊥⊥), G + J⊥⊥〉

= 〈D̃(F ) · α,G + N〉.

Note that we have used Lemma 3.3 in the second equality. On the other

hand, since the left A-module action on A is trivial, D̃(α · F ) = α · D̃(F ).

Hence D̃ is a module derivation. Therefore there exist Φ ∈ (A∗∗/N)∗ such that

D̃(F ) = F · Φ − Φ · F , for all F ∈ A∗∗ . Consider the canonical embedding

j : (A/J)∗ −→ (A∗∗/J⊥⊥)∗ . Put Ψ = j ◦ φ∗(Φ), then for each F and G in A∗∗ ,

we have

〈D(F + J⊥⊥), G + J⊥⊥〉 = 〈D̃(F ), G + N〉

= 〈F · Φ − Φ · F,G + N〉

= 〈Φ, G¤F + F¤G + N〉

= 〈φ∗(Φ), λ(G¤F + F¤G + N)〉

= 〈λ(G¤F + F¤G + N),Φ ◦ φ〉

= 〈j(Φ ◦ φ), G¤F + F¤G + J⊥⊥〉

= 〈Ψ, G¤F + F¤G + J⊥⊥〉

= 〈(F + J⊥⊥) · Ψ − Ψ · (F + J⊥⊥), G + J⊥⊥〉.

Corollary 3.8. Let A be a Banach A-module with trivial left action and A/J be

a commutative A-module. If one of the following conditions hold
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(i) A/J is a left ideal in A∗∗/J⊥⊥ .

(ii) A/J is a dual Banach algebra.

(iii) A/J is Arens regular and every derivation from A/J into J⊥ is weakly

compact.

Then weak module amenability A∗∗ implies weak module amenability A .

Proof. This is a consequence of Propositions 3.4 and 3.7, and [17, Theorem 2.3],

[16, Theorem 2.2], and [13, Corollary 7.5] for the parts (i), (ii), and (iii), respec-

tively.
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