Functions and differences whose roots have the same real part

Piriya Prunglerdbuathong*, Kiattisak Prathom, Suton Tadee and Vichian Laohakosol ${ }^{\dagger}$

Abstract

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function of order ≤ 1. Assume that all the roots of f have the same real part, abbreviated by $f \in S R P$. For $\lambda \in \mathbb{R} \backslash\{0\}$, define $\Delta_{\lambda} f(z):=f(z+\lambda)-f(z)$. We investigate the situation when $\Delta_{\lambda} f \in S R P$.

Keywords: entire functions, differences, zeros, real part
2000 Mathematics Subject Classification: 30D15, 39A70

1 Introduction

For $\lambda \in \mathbb{R} \backslash\{0\}$, define the difference operator Δ_{λ} by

$$
\Delta_{\lambda} f(z):=f(z+\lambda)-f(z) \quad \text { where } f: \mathbb{C} \rightarrow \mathbb{C}
$$

Define the class of entire functions all of whose roots have the same real part by
$S R P:=\{$ entire $f: \mathbb{C} \rightarrow \mathbb{C}$; all the roots of f have the same real part $\}$.
In [1], it is shown that both the polynomials x^{n} and $\Delta_{\lambda}\left(x^{n}\right) \in \operatorname{SRP}$. There then arises a natural question whether there are any other functions with this property.

[^0]In this paper, we show that the answer is affirmative for entire functions of order <1, and holds with additional assumptions for entire functions of order 1.

Recall that an entire function is a function analytic throughout \mathbb{C}. Let $f(z)$ be an entire function. The order of $f(z)$ is defined by

$$
\rho(f)=\limsup _{r \rightarrow \infty} \frac{\ln \ln M(r ; f)}{\ln r}
$$

where $M(r ; f)=\max _{|z|=r}|f(z)|$. Examples of entire functions of order 0 are polynomials, while $\cos (\sqrt{z})$ is entire of order $1 / 2$. Examples of entire functions of order 1 are $e^{z}, \sin z$ and $\cos z$.

Let $f(z)$ be an entire function of finite order ρ with $\left\{z_{n}\right\}$ being the set of all its non-vanishing zeros. The Weierstrass prime factor associated with f is defined as

$$
E\left(\frac{z}{z_{n}}, p\right)=\left(1-\frac{z}{z_{n}}\right) \exp \left(\frac{z}{z_{n}}+\frac{1}{2}\left(\frac{z}{z_{n}}\right)^{2}+\frac{1}{3}\left(\frac{z}{z_{n}}\right)^{3} \cdots+\frac{1}{p}\left(\frac{z}{z_{n}}\right)^{p}\right)
$$

($p \in \mathbb{N} \cup\{0\}$) and the canonical associated with f, which is also an entire function, is defined by

$$
P(z)=\prod_{n=1}^{\infty} E\left(\frac{z}{z_{n}}, p\right)
$$

Our main tool is the well-known Hadamard's factorization theorem of entire functions, [2], [3], which states that:

$$
f(z)=e^{g(z)} z^{k} P(z)
$$

where $g(z) \in \mathbb{C}[z]$ is a polynomial of degree $q \leq \rho, k \in \mathbb{N} \cup\{0\}$, and $P(z)$ is a canonical product associated with f of order $\sigma \leq \rho$.

It is also known that

- if $\rho \notin \mathbb{Z}$, then $\sigma=\rho$ and $q \leq[\rho]$;
- if $\rho \in \mathbb{Z}$, then at least one of the quantities q and σ equals ρ;
- if $\sigma \notin \mathbb{Z}$, then $p=[\sigma]$;
- if $\sigma \in \mathbb{Z}$, then $p=\sigma$ if $\sum_{n=1}^{\infty} 1 /\left|z_{n}\right|^{\sigma}=\infty$ and $p=\sigma-1$ if $\sum_{n=1}^{\infty} 1 /\left|z_{n}\right|^{\sigma}<\infty$.

The nonnegative integer p is called the genus of the canonical product P.

2 Results

Our first main result shows that the SRP property propagates from f to $\Delta_{\lambda} f$ for entire functions of order <1. This generalizes the result of Evans, Stolarsky and Wavik in [1].

Theorem 2.1. Let the notation be as set out in Section 1. If $f \in S R P$ and $\operatorname{order}(f):=\rho<1$, then $\Delta_{\lambda} f \in S R P$.

Proof. Since $\rho<1$, we have $q=0, \sigma=\rho<1$ and $p=0$ and Hadamard's theorem yields

$$
f(z)=e^{g_{0}} z^{k} \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right) \quad\left(g_{0} \in \mathbb{C}\right)
$$

Since $f \in \operatorname{SRP}$, we can write the non-vanishing zeros of f as

$$
z_{n}=c+d_{n} i \quad\left(c, d_{n} \in \mathbb{R}\right) .
$$

Take a root $w=a+b i \quad(a, b \in \mathbb{R})$ of $\Delta_{\lambda} f$. We now consider two cases depending on whether $k=0$.

Case 1: $k=0$. We aim to show that $\Re(w)=c-\frac{\lambda}{2}$. Since

$$
\Delta_{\lambda} f(z)=e^{g_{0}}\left\{\prod_{n=1}^{\infty}\left(1-\frac{z+\lambda}{z_{n}}\right)-\prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right)\right\}
$$

each root $w=a+b i$ of $\Delta_{\lambda} f(z)$ must satisfy $\prod_{n=1}^{\infty}\left(1-\frac{w+\lambda}{z_{n}}\right)=\prod_{n=1}^{\infty}\left(1-\frac{w}{z_{n}}\right)$, i.e.,

$$
\prod_{n=1}^{\infty}\left\{(c-a-\lambda)+\left(d_{n}-b\right) i\right\}=\prod_{n=1}^{\infty}\left\{(c-a)+\left(d_{n}-b\right) i\right\}
$$

Taking the absolute values of both sides, we get

$$
\prod_{n=1}^{\infty}\left\{(c-a-\lambda)^{2}+\left(d_{n}-b\right)^{2}\right\}=\prod_{n=1}^{\infty}\left\{(c-a)^{2}+\left(d_{n}-b\right)^{2}\right\}
$$

which necessarily imples that

$$
(c-a-\lambda)^{2}=(c-a)^{2}
$$

Thus, $\Re(w)=a=c-\frac{\lambda}{2}$, as desired.

Case 2: $k>0$. We aim to show that $\Re(w)=-\frac{\lambda}{2}$. Since $k>0$, the function f has 0 as one of its roots and as $f \in \mathrm{SRP}$, all its roots have real parts $=0$. From

$$
\Delta_{\lambda} f(z)=e^{g_{0}}\left\{(z+\lambda)^{k} \prod_{n=1}^{\infty}\left(1-\frac{z+\lambda}{z_{n}}\right)-z^{k} \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right)\right\}
$$

we see that each root $w=a+b i$ of $\Delta_{\lambda} f(z)$ must satisfy

$$
(a+\lambda+b i)^{k} \prod_{n=1}^{\infty}\left\{(-a-\lambda)+\left(d_{n}-b\right) i\right\}=(a+b i)^{k} \prod_{n=1}^{\infty}\left\{-a+\left(d_{n}-b\right) i\right\}
$$

Taking the absolute values of both sides, we get

$$
\left\{(a+\lambda)^{2}+b^{2}\right\}^{k} \prod_{n=1}^{\infty}\left\{(a+\lambda)^{2}+\left(d_{n}-b\right)^{2}\right\}=\left(a^{2}+b^{2}\right)^{k} \prod_{n=1}^{\infty}\left\{a^{2}+\left(d_{n}-b\right)^{2}\right\}
$$

which forces $a^{2}=(a+\lambda)^{2}$. Thus, $\Re(w)=a=-\frac{\lambda}{2}$.
Since w is an arbitrary root of $\Delta_{\lambda} f$, we conclude at once from both cases that $\Delta_{\lambda} f \in \mathrm{SRP}$.

We come now to our second main result.
Theorem 2.2. Let the notation be as set out in Section 1. Assume that or$\operatorname{der}(f)=\rho=1$ and $p=0$ so that by Hadamard's theorem

$$
f(z)=e^{h z+g_{0}} z^{k} \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right)
$$

where $h, g_{0} \in \mathbb{C}$. If $f \in S R P$ and $\left|e^{h \lambda}\right|=1$, then $\Delta_{\lambda} f \in S R P$.
Proof. Again we treat two separate cases depending on whether $k=0$. Since $f \in$ SRP, we can write the non-vanishing zeros of f as

$$
z_{n}=c+d_{n} i \quad\left(c, d_{n} \in \mathbb{R}\right)
$$

Take a root $w=a+b i \quad(a, b \in \mathbb{R})$ of $\Delta_{\lambda} f$.
Case 1: $k=0$. We aim to show that $\Re(w)=c-\frac{\lambda}{2}$. Since

$$
\Delta_{\lambda} f(z)=e^{h(z+\lambda)+g_{0}} \prod_{n=1}^{\infty}\left(1-\frac{z+\lambda}{z_{n}}\right)-e^{h z+g_{0}} \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right)
$$

each root $w=a+i b$ of $\Delta_{\lambda} f(z)$ satisfies

$$
e^{h \lambda} \prod_{n=1}^{\infty}\left\{(c-a-\lambda)+\left(d_{n}-b\right) i\right\}=\prod_{n=1}^{\infty}\left\{(c-a)+\left(d_{n}-b\right) i\right\}
$$

Taking absolute values of both sides, we get

$$
\left|e^{h \lambda}\right|^{2} \prod_{n=1}^{\infty}\left\{(c-a-\lambda)^{2}+\left(d_{n}-b\right)^{2}\right\}=\prod_{n=1}^{\infty}\left\{(c-a)^{2}+\left(d_{n}-b\right)^{2}\right\}
$$

Using $\left|e^{h \lambda}\right|=1$, we deduce at once that $(c-a-\lambda)^{2}=(c-a)^{2}$, i.e., $\Re(w)=a=$ $c-\frac{\lambda}{2}$.

Case 2: $k>0$. We aim to show that $\Re(w)=-\frac{\lambda}{2}$. Since $k>0$, the function f has 0 as one of its roots and as $f \in \mathrm{SRP}$, we infer that all its roots have real parts $=0$. Since

$$
\Delta_{\lambda} f(z)=e^{h(z+\lambda)+g_{0}}(z+\lambda)^{k} \prod_{n=1}^{\infty}\left(1-\frac{z+\lambda}{z_{n}}\right)-e^{h z+g_{0}} z^{k} \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right)
$$

each root $w=a+i b$ of $\Delta_{\lambda} f(z)$ satisfies

$$
e^{h \lambda}(a+\lambda+b i)^{k} \prod_{n=1}^{\infty}\left\{(-a-\lambda)+\left(d_{n}-b\right) i\right\}=(a+b i)^{k} \prod_{n=1}^{\infty}\left\{-a+\left(d_{n}-b\right) i\right\}
$$

which yields after taking absolute on both sides

$$
\left|e^{h \lambda}\right|^{2}\left\{(a+\lambda)^{2}+b^{2}\right\}^{k} \prod_{n=1}^{\infty}\left\{(a+\lambda)^{2}+\left(d_{n}-b\right)^{2}\right\}=\left(a^{2}+b^{2}\right)^{k} \prod_{n=1}^{\infty}\left\{a^{2}+\left(d_{n}-b\right)^{2}\right\} .
$$

Using $\left|e^{h \lambda}\right|=1$, we deduce that $(a+\lambda)^{2}=a^{2}$, and so $\Re(w)=a=-\frac{\lambda}{2}$.
We conclude from both cases that $\Delta_{\lambda} f(z) \in \mathrm{SRP}$.
Theorem 2.3. Let the notation be as set out in Section 1. Assume that or$\operatorname{der}(f)=\rho=1$ and $p=1$ so that by Hadamard's theorem

$$
f(z)=e^{h z+g_{0}} z^{k} \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right) \exp \left(\frac{z}{z_{n}}\right)
$$

where $h, g_{0} \in \mathbb{C}$.
(i) If $f \in S R P, k=0,\left|e^{h \lambda}\right|=1$ and $\left|\exp \left(\frac{\lambda}{z_{n}}\right)\right|=1$ (i.e., all non-vanishing zeros are purely imaginary), then $\Delta_{\lambda} f \in S R P$.
(ii) If $f \in S R P, k>0$ and $\left|e^{h \lambda}\right|=1$, then $\Delta_{\lambda} f \in S R P$.

Proof. Again we treat two separate cases depending on whether $k=0$. Since $f \in$ SRP, we can write the non-vanishing zeros of f as

$$
z_{n}=c+d_{n} i \quad\left(c, d_{n} \in \mathbb{R}\right)
$$

Take a root $w=a+b i \quad(a, b \in \mathbb{R})$ of $\Delta_{\lambda} f$.
Case 1: $k=0$. We aim to show that $\Re(w)=c-\frac{\lambda}{2}$. Since

$$
\Delta_{\lambda} f(z)=e^{h(z+\lambda)+g_{0}} \prod_{n=1}^{\infty}\left(1-\frac{(z+\lambda)}{z_{n}}\right) \exp \left(\frac{(z+\lambda)}{z_{n}}\right)-e^{h z+g_{0}} \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right) \exp \left(\frac{z}{z_{n}}\right)
$$

each root $w=a+i b$ of $\Delta_{\lambda} f(z)$ satisfies

$$
e^{h \lambda} \prod_{n=1}^{\infty}\left\{(c-a-\lambda)+\left(d_{n}-b\right) i\right\} \exp \left(\frac{\lambda}{z_{n}}\right)=\prod_{n=1}^{\infty}\left\{(c-a)+\left(d_{n}-b\right) i\right\}
$$

Taking absolute values of both sides, we get

$$
\left|e^{h \lambda}\right|^{2} \prod_{n=1}^{\infty}\left\{(c-a-\lambda)^{2}+\left(d_{n}-b\right)^{2}\right\}\left|\exp \left(\frac{\lambda}{z_{n}}\right)\right|^{2}=\prod_{n=1}^{\infty}\left\{(c-a)^{2}+\left(d_{n}-b\right)^{2}\right\}
$$

Using $\left|e^{h \lambda}\right|=1$ and $\left|\exp \left(\frac{\lambda}{z_{n}}\right)\right|=1$, we deduce at once that $(c-a-\lambda)^{2}=$ $(c-a)^{2}$,i.e., $\Re(w)=a=c-\frac{\lambda}{2}$. Case 2: $k>0$. We aim to show that $\Re(w)=-\frac{\lambda}{2}$. Since $k>0$, the function f has 0 as one of its roots and as $f \in$ SRP, we infer that all its roots have real parts $=0$. Since

$$
\begin{aligned}
& \Delta_{\lambda} f(z)=e^{h(z+\lambda)+g_{0}}(z+\lambda)^{k} \prod_{n=1}^{\infty}\left(1-\frac{(z+\lambda)}{z_{n}}\right) \exp \left(\frac{(z+\lambda)}{z_{n}}\right) \\
&-e^{h z+g_{0}} z^{k} \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right) \exp \left(\frac{z}{z_{n}}\right)
\end{aligned}
$$

each root $w=a+i b$ of $\Delta_{\lambda} f(z)$ satisfies
$e^{h \lambda}(a+\lambda+b i)^{k} \prod_{n=1}^{\infty}\left\{(-a-\lambda)+\left(d_{n}-b\right) i\right\} \exp \left(\frac{\lambda}{z_{n}}\right)=(a+b i)^{k} \prod_{n=1}^{\infty}\left\{-a+\left(d_{n}-b\right) i\right\}$,
which yields after taking absolute on both sides

$$
\begin{aligned}
&\left|e^{h \lambda}\right|^{2}\left\{(a+\lambda)^{2}+b^{2}\right\}^{k} \prod_{n=1}^{\infty}\left\{(a+\lambda)^{2}+\left(d_{n}-b\right)^{2}\right\}\left|\exp \left(\frac{\lambda}{z_{n}}\right)\right|^{2} \\
&=\left(a^{2}+b^{2}\right)^{k} \prod_{n=1}^{\infty}\left\{a^{2}+\left(d_{n}-b\right)^{2}\right\}
\end{aligned}
$$

Since $z_{n}=d_{n} i$, we have $\left|\exp \left(\frac{\lambda}{z_{n}}\right)\right|=1$. Using $\left|e^{h \lambda}\right|=1$, we deduce that $(a+\lambda)^{2}=a^{2}$, and so $\Re(w)=a=-\frac{\lambda}{2}$.

We conclude from both cases that $\Delta_{\lambda} f(z) \in$ SRP.
Theorem 2.3 can be stated in a slightly shorter version, by combining the two possibilities, as: Assume that order $(f)=\rho=1$ and $p=1$ so that by Hadamard's theorem

$$
f(z)=e^{h z+g_{0}} z^{k} \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right) \exp \left(\frac{z}{z_{n}}\right)
$$

where $h, g_{0} \in \mathbb{C}$. If $f \in \mathrm{SRP}$, all non-vanishing zeros of f are purely imaginary and $\left|e^{h \lambda}\right|=1$, then $\Delta_{\lambda} f \in S R P$.

3 Examples

In this section, we work out several examples starting with entire functions of order 0 which extend the class obtained in [1]. The notation in Section 1 is being kept here.

Example 3.1. (Functions of order <1)
I. Polynomials of the form

$$
f(z)=(z+t)^{n} \quad(t \in \mathbb{R}, n \in \mathbb{N})
$$

have orders 0 . The single root of $f(z)$ is at $z=-t$ so that trivially $f \in \operatorname{SRP}$. Since

$$
\Delta_{\lambda}(z+t)^{n}=(z+\lambda+t)^{n}-(z+t)^{n}
$$

the roots w of $\Delta_{\lambda}(z+t)^{n}$ satisfy $(w+\lambda+t)^{n}=(w+t)^{n}$. It is easily checked that these roots are

$$
w_{k}=-t-\frac{\lambda}{2}-i \frac{\lambda \sin \frac{2 \pi k}{n}}{2\left(1-\cos \frac{2 \pi k}{n}\right)} \quad(k=1, \ldots, n-1)
$$

all of which clearly have the same real part $-t-\frac{\lambda}{2}$.
II. The logarithmic function

$$
f(z)=\log \left(z^{n}+1\right) \quad(n \in \mathbb{N})
$$

has order 0 . Its sole zero is at $z=0$, so that this function belongs to SRP. The roots w of $\Delta_{\lambda} \log \left(z^{2}+1\right)=0$, are

$$
w_{k}=-\frac{\lambda}{2}-i \frac{\lambda \sin \frac{2 \pi k}{n}}{2\left(1-\cos \frac{2 \pi k}{n}\right)} \quad(k=1, \ldots, n-1)
$$

all of which have the same real part $\Re(w)=-\frac{\lambda}{2}$.
The next batch of examples are entire functions of order 1.
Example 3.2. (Functions of order 1)
I. The cosine function

$$
f(z)=\cos (i z)=\prod_{n=1}^{\infty}\left(1+\frac{4 z^{2}}{(2 n-1)^{2} \pi^{2}}\right)
$$

is entire of order 1 with genus $p=0$. Here, $h=0$ so that $\left|e^{h \lambda}\right|=1$. The zeros of $\cos (i z)$ are

$$
z_{n}=-i \frac{(2 n-1) \pi}{2} \quad(n \in \mathbb{Z})
$$

and so their real parts are equal to $\Re\left(z_{n}\right)=0$, showing that $\cos (i z) \in \mathrm{SRP}$. The roots w of

$$
0=\Delta_{\lambda} \cos (i z)=\cos (i(z+\lambda))-\cos (i z)
$$

are

$$
w_{n}=-\frac{\lambda}{2}-n \pi i \quad(n \in \mathbb{Z})
$$

all of which have the same real parts equal to $-\frac{\lambda}{2}$, and so $\Delta_{\lambda} \cos (i z) \in \operatorname{SRP}$.
II. The sine function

$$
f(z)=\sin (i z)=i z \prod_{n=1}^{\infty}\left(1+\frac{4 z^{2}}{n^{2} \pi^{2}}\right)
$$

is entire of order 1 with $p=0$. Here, $h=0$ so that $\left|e^{h \lambda}\right|=1$. The same analysis as in the last example shows that both $\sin (i z)$ and $\Delta_{\lambda} \sin (i z)$ are in SRP.
III. The exponential function

$$
f(z)=e^{i z} z
$$

is entire of order 1 with only a single zero at $z=0$, and so it belongs to SRP with $p=0$. Here, $\left|e^{i \lambda}\right|=1$. The roots w of $0=\Delta_{\lambda} e^{i z} z=e^{i(z+\lambda)}(z+\lambda)-e^{i z} z$ are

$$
w=-\frac{\lambda}{2}+i \frac{\lambda \sin \lambda}{2-2 \cos \lambda}
$$

all of whose real parts are equal to $-\frac{\lambda}{2}$, showing that $\Delta_{\lambda} e^{i z} z \in \operatorname{SRP}$.
IV. The exponential polynomial

$$
f(z)=e^{i z}(z+i)(z-i)=e^{i z}\left(1+\frac{z}{i}\right)\left(1-\frac{z}{i}\right)
$$

is entire of order 1 and has two roots $\pm i$ so that $p=0$. Here, $\left|e^{i \lambda}\right|=1$. Let $w=a+b i(a, b \in \mathbb{R})$ be any root of $\Delta_{\lambda} f$. Solving $\Delta_{\lambda} e^{i w}(w+i)(w-i)=0$, we get

$$
e^{i \lambda}(w+\lambda+i)(w+\lambda-i)=(w+i)(w-i) .
$$

Taking absolute values of bothe sides leads to

$$
\left((a+\lambda)^{2}+(b+1)^{2}\right)\left((a+\lambda)^{2}+(b-1)^{2}\right)=\left(a^{2}+(b+1)^{2}\right)\left(a^{2}+(b-1)^{2}\right),
$$

we deduce that $(a+\lambda)^{2}=a^{2}$, which in turns yields $\Re(w)=a=-\frac{\lambda}{2}$, i.e. $\Delta_{\lambda} e^{i z}(z+i)(z-i) \in \mathrm{SRP}$.
V. The gamma function

$$
f(z)=\frac{1}{\Gamma(i z)}=i z e^{i \gamma z} \prod_{n=1}^{\infty}\left(1+\frac{z i}{n}\right) e^{-\frac{z i}{n}} \quad(\gamma, \text { Euler's constant })
$$

is entire of order $1,[3]$, p. 90 , and has roots at 0 and $n i(n \in \mathbb{N})$, so that $p=1$. Here, $\left|e^{i \gamma \lambda}\right|=1$ and $\left|e^{-\frac{\lambda i}{n}}\right|=1$. Let $w=a+b i(a, b \in \mathbb{R})$ be any root of $\Delta_{\lambda} f$.
Solving $\Delta_{\lambda} i w e^{i \gamma w} \prod_{n=1}^{\infty}\left(1+\frac{w i}{n}\right) e^{-\frac{w i}{n}}=0$, we get

$$
\left(\frac{i w+i \lambda}{i w}\right) e^{i \gamma \lambda} \prod_{n=1}^{\infty}\left(\frac{n+i w+i \lambda}{n+i w}\right) e^{-\frac{\lambda i}{n}}=1
$$

Taking absolute values of both sides leads to

$$
\left(\frac{(a+\lambda)^{2}+b^{2}}{a^{2}+b^{2}}\right) \prod_{n=1}^{\infty}\left(\frac{(n+b)^{2}+(a+\lambda)^{2}}{(n+b)^{2}+a^{2}}\right)=1
$$

which in turns yields $\Re(w)=a=-\frac{\lambda}{2}$, i.e., $\Delta_{\lambda} \frac{1}{\Gamma(i z)} \in \operatorname{SRP}$.

The next example shows that the condition on the absolute value of the exponential factor cannot be dropped in general.

Example 3.3. The exponential polynomial

$$
f(z)=e^{z} z^{2}
$$

is entire of order 1 and has a single root at 0 with multiplicity 2 , so that $p=0$. Here, $\left|e^{\lambda}\right| \neq 1$. The roots w of $0=\Delta_{\lambda} e^{z} z^{2}=e^{z+\lambda}(z+\lambda)^{2}-e^{z} z^{2}$ are

$$
w=\frac{\lambda}{1 \pm e^{-\frac{\lambda}{2}}} .
$$

showing, that $\Delta_{\lambda} e^{i z} z \notin \mathrm{SRP}$.

Acknowledgements: This work was carried out during the first two authors' visit at the Department of Mathematics, Faculty of Science, Kasetsart University, whose hospitality is sincerely acknowledged.

References

[1] R.J. Evans, K.B. Stolarsky and J.J. Wavik, Difference polynomials, A tribute to Emil Grosswald; number theory and related analysis, Contemp. Math., Amer. Math. Soc. 143(1993), 329-346.
[2] E. Hille, Analytic Function Theory, (2nd ed.), Chelsea, New York, 1987.
[3] A.S.B. Holland, Introduction to The Theory of Entire Function, Academic Press, New York, 1973.
Piriya Prunglerdbuathong ${ }^{1}$
and Kiattisak Prathom ${ }^{2}$
Department of Mathematics
Faculty of Science
Prince of Songkla University
Songkhla 90112, Thailand
Email: ${ }^{1}$ gt_ bike@hotmail.com
and ${ }^{2}$ ou_ kiat@hotmail.com

Suton Tadee ${ }^{3}$
and Vichian Laohakosol ${ }^{4}$
Department of Mathematics
Faculty of Science
Kasetsart University
Bangkok 10900, Thailand
Email: ${ }^{3}$ s.tadee@hotmail.com
and ${ }^{4}$ fscivil@ku.ac.th

[^0]: * Corresponding author
 ${ }^{\dagger}$ Supported by the Commission on Higher Education and The Thailand Research Funds RTA 5180005.

