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Abstract: Let f : C → C be an entire function of order ≤ 1. Assume that all

the roots of f have the same real part, abbreviated by f ∈ SRP . For λ ∈ R\{0} ,

define ∆λf(z) := f(z+λ)−f(z). We investigate the situation when ∆λf ∈ SRP .
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1 Introduction

For λ ∈ R \ {0} , define the difference operator ∆λ by

∆λf(z) := f(z + λ) − f(z) where f : C → C.

Define the class of entire functions all of whose roots have the same real part by

SRP := {entire f : C → C; all the roots of f have the same real part} .

In [1], it is shown that both the polynomials xn and ∆λ(xn) ∈ SRP. There then

arises a natural question whether there are any other functions with this property.
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In this paper, we show that the answer is affirmative for entire functions of order

< 1, and holds with additional assumptions for entire functions of order 1.

Recall that an entire function is a function analytic throughout C . Let f(z)

be an entire function. The order of f(z) is defined by

ρ(f) = lim sup
r→∞

ln lnM(r; f)

ln r
,

where M(r; f) = max|z|=r |f(z)| . Examples of entire functions of order 0 are

polynomials, while cos(
√

z) is entire of order 1/2. Examples of entire functions

of order 1 are ez, sin z and cos z .

Let f(z) be an entire function of finite order ρ with {zn} being the set of all

its non-vanishing zeros. The Weierstrass prime factor associated with f is defined

as
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(p ∈ N∪{0}) and the canonical associated with f , which is also an entire function,

is defined by

P (z) =
∞
∏

n=1

E

(

z

zn

, p

)

.

Our main tool is the well-known Hadamard’s factorization theorem of entire func-

tions, [2], [3], which states that:

f(z) = eg(z)zkP (z),

where g(z) ∈ C[z] is a polynomial of degree q ≤ ρ, k ∈ N ∪ {0} , and P (z) is a

canonical product associated with f of order σ ≤ ρ .

It is also known that

• if ρ /∈ Z , then σ = ρ and q ≤ [ρ] ;

• if ρ ∈ Z , then at least one of the quantities q and σ equals ρ ;

• if σ /∈ Z , then p = [σ] ;

• if σ ∈ Z , then p = σ if
∑∞

n=1 1/ |zn|σ = ∞ and p = σ−1 if
∑∞

n=1 1/ |zn|σ < ∞ .

The nonnegative integer p is called the genus of the canonical product P .
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2 Results

Our first main result shows that the SRP property propagates from f to ∆λf for

entire functions of order < 1. This generalizes the result of Evans, Stolarsky and

Wavik in [1].

Theorem 2.1. Let the notation be as set out in Section 1. If f ∈ SRP and

order(f ) := ρ < 1 , then ∆λf ∈ SRP .

Proof. Since ρ < 1, we have q = 0, σ = ρ < 1 and p = 0 and Hadamard’s

theorem yields

f(z) = eg0zk

∞
∏

n=1

(

1 − z

zn

)

(g0 ∈ C).

Since f ∈ SRP, we can write the non-vanishing zeros of f as

zn = c + dni (c, dn ∈ R).

Take a root w = a+ bi (a, b ∈ R) of ∆λf . We now consider two cases depending

on whether k = 0.

Case 1: k = 0. We aim to show that <(w) = c − λ
2 . Since

∆λf(z) = eg0

{

∞
∏

n=1

(

1 − z + λ

zn

)

−
∞
∏

n=1

(

1 − z

zn

)

}

,

each root w = a+ bi of ∆λf(z) must satisfy
∏∞

n=1

(

1 − w+λ
zn

)

=
∏∞

n=1

(

1 − w
zn

)

,

i.e.,
∞
∏

n=1

{(c − a − λ) + (dn − b)i} =

∞
∏

n=1

{(c − a) + (dn − b)i} .

Taking the absolute values of both sides, we get

∞
∏

n=1

{

(c − a − λ)2 + (dn − b)2
}

=

∞
∏

n=1

{

(c − a)2 + (dn − b)2
}

,

which necessarily imples that

(c − a − λ)
2

= (c − a)
2
.

Thus, <(w) = a = c − λ
2 , as desired.
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Case 2: k > 0. We aim to show that <(w) = −λ
2 . Since k > 0, the function

f has 0 as one of its roots and as f ∈ SRP, all its roots have real parts = 0.

From

∆λf(z) = eg0

{

(z + λ)k

∞
∏

n=1

(

1 − z + λ

zn

)

− zk

∞
∏

n=1

(

1 − z

zn

)

}

,

we see that each root w = a + bi of ∆λf(z) must satisfy

(a + λ + bi)k

∞
∏

n=1

{(−a − λ) + (dn − b)i} = (a + bi)k

∞
∏

n=1

{−a + (dn − b)i} .

Taking the absolute values of both sides, we get

{

(a + λ)2 + b2
}k

∞
∏

n=1

{

(a + λ)2 + (dn − b)2
}

= (a2 + b2)k

∞
∏

n=1

{

a2 + (dn − b)2
}

,

which forces a2 = (a + λ)2. Thus, <(w) = a = −λ
2 .

Since w is an arbitrary root of ∆λf , we conclude at once from both cases that

∆λf ∈ SRP.

We come now to our second main result.

Theorem 2.2. Let the notation be as set out in Section 1. Assume that or-

der (f) = ρ = 1 and p = 0 so that by Hadamard’s theorem

f(z) = ehz+g0zk

∞
∏

n=1

(

1 − z

zn

)

,

where h, g0 ∈ C. If f ∈ SRP and
∣

∣ehλ
∣

∣ = 1 , then ∆λf ∈ SRP.

Proof. Again we treat two separate cases depending on whether k = 0. Since f ∈
SRP, we can write the non-vanishing zeros of f as

zn = c + dni (c, dn ∈ R).

Take a root w = a + bi (a, b ∈ R) of ∆λf .

Case 1: k = 0. We aim to show that <(w) = c − λ
2 . Since

∆λf(z) = eh(z+λ)+g0

∞
∏

n=1

(

1 − z + λ

zn

)

− ehz+g0

∞
∏

n=1

(

1 − z

zn

)

,
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each root w = a + ib of ∆λf(z) satisfies

ehλ

∞
∏

n=1

{(c − a − λ) + (dn − b)i} =
∞
∏

n=1

{(c − a) + (dn − b)i} .

Taking absolute values of both sides, we get

∣

∣ehλ
∣

∣

2
∞
∏

n=1

{

(c − a − λ)2 + (dn − b)2
}

=
∞
∏

n=1

{

(c − a)2 + (dn − b)2
}

.

Using
∣

∣ehλ
∣

∣ = 1, we deduce at once that (c − a − λ)2 = (c − a)2 ,i.e., <(w) = a =

c − λ
2 .

Case 2: k > 0. We aim to show that <(w) = −λ
2 . Since k > 0, the function

f has 0 as one of its roots and as f ∈ SRP, we infer that all its roots have real

parts = 0. Since

∆λf(z) = eh(z+λ)+g0(z + λ)k

∞
∏

n=1

(1 − z + λ

zn

) − ehz+g0zk

∞
∏

n=1

(1 − z

zn

),

each root w = a + ib of ∆λf(z) satisfies

ehλ(a + λ + bi)k

∞
∏

n=1

{(−a − λ) + (dn − b)i} = (a + bi)k

∞
∏

n=1

{−a + (dn − b)i} ,

which yields after taking absolute on both sides

∣

∣ehλ
∣

∣

2 {

(a + λ)2 + b2
}k

∞
∏

n=1

{

(a + λ)2 + (dn − b)2
}

= (a2+b2)k

∞
∏

n=1

{

a2 + (dn − b)2
}

.

Using
∣

∣ehλ
∣

∣ = 1, we deduce that (a + λ)2 = a2 , and so <(w) = a = −λ
2 .

We conclude from both cases that ∆λf(z) ∈ SRP.

Theorem 2.3. Let the notation be as set out in Section 1. Assume that or-

der (f) = ρ = 1 and p = 1 so that by Hadamard’s theorem

f(z) = ehz+g0zk

∞
∏

n=1

(

1 − z

zn

)

exp

(

z

zn

)

,

where h, g0 ∈ C.

(i) If f ∈ SRP, k = 0 ,
∣

∣ehλ
∣

∣ = 1 and
∣

∣

∣
exp( λ

zn

)
∣

∣

∣
= 1 (i.e., all non-vanishing zeros

are purely imaginary), then ∆λf ∈ SRP.
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(ii) If f ∈ SRP, k > 0 and
∣

∣ehλ
∣

∣ = 1 , then ∆λf ∈ SRP.

Proof. Again we treat two separate cases depending on whether k = 0. Since f ∈
SRP, we can write the non-vanishing zeros of f as

zn = c + dni (c, dn ∈ R).

Take a root w = a + bi (a, b ∈ R) of ∆λf .

Case 1: k = 0. We aim to show that <(w) = c − λ
2 . Since

∆λf(z) = eh(z+λ)+g0

∞
∏

n=1

(
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zn
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exp
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zn
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∞
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)
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(

z

zn

)

,

each root w = a + ib of ∆λf(z) satisfies

ehλ
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{(c − a − λ) + (dn − b)i} exp

(

λ

zn

)

=

∞
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Taking absolute values of both sides, we get

∣
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∣

∣

2
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∣

∣

∣

∣

exp

(

λ

zn

)
∣

∣

∣

∣

2

=

∞
∏

n=1

{

(c − a)2 + (dn − b)2
}

.

Using
∣

∣ehλ
∣

∣ = 1 and
∣

∣

∣
exp( λ
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)
∣

∣

∣
= 1, we deduce at once that (c − a − λ)2 =

(c − a)2 ,i.e., <(w) = a = c − λ
2 . Case 2: k > 0. We aim to show that

<(w) = −λ
2 . Since k > 0, the function f has 0 as one of its roots and as f ∈

SRP, we infer that all its roots have real parts = 0. Since

∆λf(z) = eh(z+λ)+g0(z + λ)k

∞
∏

n=1

(

1 − (z + λ)

zn

)

exp

(
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zn

)

− ehz+g0zk

∞
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(

1 − z

zn

)

exp

(

z
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)

,

each root w = a + ib of ∆λf(z) satisfies

ehλ(a+λ+bi)k

∞
∏
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{(−a − λ) + (dn − b)i} exp

(

λ

zn

)

= (a+bi)k

∞
∏

n=1
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which yields after taking absolute on both sides
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∣

2 {

(a + λ)2 + b2
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Since zn = dni , we have
∣

∣

∣
exp

(

λ
zn

)∣

∣

∣
= 1. Using

∣

∣ehλ
∣

∣ = 1, we deduce that

(a + λ)2 = a2 , and so <(w) = a = −λ
2 .

We conclude from both cases that ∆λf(z) ∈ SRP.

Theorem 2.3 can be stated in a slightly shorter version, by combining the two

possibilities, as: Assume that order (f) = ρ = 1 and p = 1 so that by Hadamard’s

theorem

f(z) = ehz+g0zk

∞
∏

n=1

(

1 − z

zn

)

exp

(

z

zn

)

,

where h, g0 ∈ C. If f ∈ SRP, all non-vanishing zeros of f are purely imaginary

and
∣

∣ehλ
∣

∣ = 1, then ∆λf ∈ SRP.

3 Examples

In this section, we work out several examples starting with entire functions of

order 0 which extend the class obtained in [1]. The notation in Section 1 is being

kept here.

Example 3.1. (Functions of order < 1)

I. Polynomials of the form

f(z) = (z + t)n (t ∈ R, n ∈ N),

have orders 0. The single root of f(z) is at z = −t so that trivially f ∈ SRP.

Since

∆λ(z + t)n = (z + λ + t)n − (z + t)n,

the roots w of ∆λ(z + t)n satisfy (w + λ + t)n = (w + t)n . It is easily checked

that these roots are

wk = −t − λ

2
− i

λ sin 2πk
n

2
(

1 − cos 2πk
n

) (k = 1, . . . , n − 1),

all of which clearly have the same real part −t − λ
2 .

II. The logarithmic function

f(z) = log (zn + 1) (n ∈ N)
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has order 0. Its sole zero is at z = 0, so that this function belongs to SRP. The

roots w of ∆λ log(z2 + 1) = 0, are

wk = −λ

2
− i

λ sin 2πk
n

2
(

1 − cos 2πk
n

) (k = 1, . . . , n − 1),

all of which have the same real part <(w) = −λ
2 .

The next batch of examples are entire functions of order 1.

Example 3.2. (Functions of order 1)

I. The cosine function

f(z) = cos(iz) =

∞
∏

n=1

(

1 +
4z2

(2n − 1)2π2

)

is entire of order 1 with genus p = 0. Here, h = 0 so that
∣

∣ehλ
∣

∣ = 1. The zeros

of cos(iz) are

zn = −i
(2n − 1)π

2
(n ∈ Z),

and so their real parts are equal to <(zn) = 0, showing that cos(iz) ∈ SRP. The

roots w of

0 = ∆λ cos(iz) = cos (i(z + λ)) − cos(iz)

are

wn = −λ

2
− nπi (n ∈ Z),

all of which have the same real parts equal to −λ
2 , and so ∆λ cos(iz) ∈ SRP.

II. The sine function

f(z) = sin(iz) = iz

∞
∏

n=1

(

1 +
4z2

n2π2

)

is entire of order 1 with p = 0. Here, h = 0 so that
∣

∣ehλ
∣

∣ = 1. The same analysis

as in the last example shows that both sin(iz) and ∆λ sin(iz) are in SRP.

III. The exponential function

f(z) = eizz
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is entire of order 1 with only a single zero at z = 0, and so it belongs to SRP with

p = 0. Here,
∣

∣eiλ
∣

∣ = 1. The roots w of 0 = ∆λeizz = ei(z+λ)(z + λ) − eizz are

w = −λ

2
+ i

λ sin λ

2 − 2 cos λ
,

all of whose real parts are equal to −λ
2 , showing that ∆λeizz ∈ SRP.

IV. The exponential polynomial

f(z) = eiz(z + i)(z − i) = eiz
(

1 +
z

i

) (

1 − z

i

)

is entire of order 1 and has two roots ±i so that p = 0. Here,
∣

∣eiλ
∣

∣ = 1. Let

w = a + bi (a, b ∈ R) be any root of ∆λf . Solving ∆λeiw(w + i)(w − i) = 0, we

get

eiλ(w + λ + i)(w + λ − i) = (w + i)(w − i).

Taking absolute values of bothe sides leads to

(

(a + λ)2 + (b + 1)2
) (

(a + λ)2 + (b − 1)2
)

=
(

a2 + (b + 1)2
) (

a2 + (b − 1)2
)

,

we deduce that (a + λ)2 = a2 , which in turns yields <(w) = a = −λ
2 , i.e.

∆λeiz(z + i)(z − i) ∈ SRP.

V. The gamma function

f(z) =
1

Γ(iz)
= izeiγz

∞
∏

n=1

(

1 +
zi

n

)

e−
zi

n (γ,Euler’s constant)

is entire of order 1, [3], p.90, and has roots at 0 and ni (n ∈ N), so that p = 1.

Here,
∣

∣eiγλ
∣

∣ = 1 and
∣

∣

∣
e−

λi

n

∣

∣

∣
= 1. Let w = a + bi (a, b ∈ R) be any root of ∆λf .

Solving ∆λiweiγw
∏∞

n=1

(

1 + wi
n

)

e−
wi

n = 0, we get

(

iw + iλ

iw

)

eiγλ

∞
∏

n=1

(

n + iw + iλ

n + iw

)

e−
λi

n = 1.

Taking absolute values of both sides leads to

(

(a + λ)2 + b2

a2 + b2

) ∞
∏

n=1

(

(n + b)2 + (a + λ)2

(n + b)2 + a2

)

= 1

which in turns yields <(w) = a = −λ
2 , i.e., ∆λ

1
Γ(iz) ∈ SRP.
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The next example shows that the condition on the absolute value of the expo-

nential factor cannot be dropped in general.

Example 3.3. The exponential polynomial

f(z) = ezz2

is entire of order 1 and has a single root at 0 with multiplicity 2, so that p = 0.

Here,
∣

∣eλ
∣

∣ 6= 1.The roots w of 0 = ∆λezz2 = ez+λ(z + λ)2 − ezz2 are

w =
λ

1 ± e−
λ

2

.

showing,that ∆λeizz /∈ SRP.
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