Chamchuri Journal of Mathematics \‘!‘
VOLUME 3(2011), 35-44 %ﬁ@m@@%/

-~

http://www.math.sc.chula.ac.th/cjm

Functions and differences whose roots
have the same real part

Piriya Prunglerdbuathong®, Kiattisak Prathom,
Suton Tadee and Vichian Laohakosol

Received 16 May 2010
Accepted 81 December 2011

Abstract: Let f:C — C be an entire function of order < 1. Assume that all
the roots of f have the same real part, abbreviated by f € SRP. For A € R\ {0},
define Ay f(z) := f(z+A)— f(z). We investigate the situation when Ayf € SRP.

Keywords: entire functions, differences, zeros, real part

2000 Mathematics Subject Classification: 30D15, 39A70

1 Introduction
For A € R\ {0}, define the difference operator Ay by
Axf(z) = f(z+ ) — f(2)  where f:C— C.
Define the class of entire functions all of whose roots have the same real part by
SRP := {entire f : C — C; all the roots of f have the same real part}.

In [1], it is shown that both the polynomials =™ and Ay(z™) € SRP. There then

arises a natural question whether there are any other functions with this property.
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In this paper, we show that the answer is affirmative for entire functions of order
< 1, and holds with additional assumptions for entire functions of order 1.

Recall that an entire function is a function analytic throughout C. Let f(2)
be an entire function. The order of f(z) is defined by

p(f) = lim sup Inln M{(r; f)

b
r—00 Inr

where M (r; f) = max|;|—. |f(2)|. Examples of entire functions of order 0 are
polynomials, while cos(y/z) is entire of order 1/2. Examples of entire functions
of order 1 are e?, sinz and cos z.

Let f(z) be an entire function of finite order p with {z,} being the set of all
its non-vanishing zeros. The Weierstrass prime factor associated with f is defined

z z 2 1/2\* 1/z\° 1/ 2\
E(Zp)l=(1-Z)exp| Z+=(Z) +=(2) -+ (=

Zn, Zn Zn 2\ Zn 3 \ zn P \ Zn
(p € NU{0}) and the canonical associated with f, which is also an entire function,
is defined by

N z
P(z) = E|— .
@=115 ()

Our main tool is the well-known Hadamard’s factorization theorem of entire func-
tions, [2], [3], which states that:

as

f(z) = e?@P(2),

where g(z) € C[z] is a polynomial of degree ¢ < p, k € NU {0}, and P(z) is a
canonical product associated with f of order o < p.

It is also known that

o if p¢7Z, then 0 =p and ¢ < [p];

e if p € 7Z, then at least one of the quantities ¢ and o equals p;

o if 0 ¢ Z, then p = [0];

eifoeZ,thenp=0cif) ° 1/|z|  =ccandp=0-1if Y~ 1/]|z]" < 0.

The nonnegative integer p is called the genus of the canonical product P.
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2 Results

Our first main result shows that the SRP property propagates from f to Ay f for
entire functions of order < 1. This generalizes the result of Evans, Stolarsky and
Wavik in [1].

Theorem 2.1. Let the notation be as set out in Section 1. If f € SRP and
order(f) :=p <1, then Axf € SRP.

Proof. Since p < 1, we have ¢ = 0, 0 = p < 1 and p = 0 and Hadamard’s

theorem yields

) =e%z ’“H(l—zn> (g0 € C).

n=1

Since f € SRP, we can write the non-vanishing zeros of f as
zZn =c+dpi (c,d, € R).

Take aroot w =a+bi (a,b€R) of Ayf. We now consider two cases depending
on whether £ = 0.
Case 1: k=0. We aim to show that R(w) = ¢ — 5. Since

Axf(z):e‘”{ﬁ (“Z;A) _ﬁ<1_§>}

n=1

each root w = a+bi of Ay f(z) must satisfy [] 2, (1 — w+>‘) =1 (1 — l),

Zn n=1 Zn
ie.,
o

IT fc—a—x) +(d, —b)i H ¢ —a) + (d, — b)i}.

n=1 n=1

Taking the absolute values of both sides, we get

H c—a—A)?+(d, —b)?} = H{c—a (dn —b)*},
which necessarily imples that
(c—a—XN°=(c—a)’.

Thus, R(w) =a = c— %, as desired.
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Case 2: k> 0. We aim to show that R®(w) = —%. Since k > 0, the function
f has 0 as one of its roots and as f € SRP, all its roots have real parts = 0.

From

A,\f(z):ego{(z—&—)\)kﬁ (1— Z:;A) —zkﬁ (ui)}

we see that each root w = a+ bi of Ay f(z) must satisfy
(a -+ X+ bi)* ﬁ {(=a—\) + (d, — b)i} = (a + bi)* ﬁ {—a+ (d, —b)i}.
n=1 n=1
Taking the absolute values of both sides, we get
{(a+ N2 +2}" ﬁ {(a+ X2+ (dn — b)?} = (a® + 1) ]O‘o[ {a®+ (dy — b)*},
n=1 n=1

which forces a? = (a+ A)2. Thus, R(w) =a=—3.
Since w is an arbitrary root of Ay f, we conclude at once from both cases that
Ayf € SRP. O

We come now to our second main result.

Theorem 2.2. Let the notation be as set out in Section 1. Assume that or-

der (f)=p=1 and p =0 so that by Hadamard’s theorem

_ _hz Okoo _*
f(z) = etz 1‘[(1 Z)

n=1
where h,go € C. If f € SRP and }eh)‘| =1, then Axf € SRP.

Proof. Again we treat two separate cases depending on whether k£ = 0. Since f €
SRP, we can write the non-vanishing zeros of f as

Zn=c+dpi (c,d, € R).

Take a root w=a+bi (a,b€R) of Ayf.
Case 1: k=0. We aim to show that R(w) = ¢ — 3. Since

Axf(z) = e"ETVTo0 T (1 - ﬂ) — et 1T (1 - i) ;
Zn Zn

n=1 n=1
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each root w = a +ib of Ayf(z) satisfies

M [ {le=a=N)+ (dn —b)i} = [ {(c—a) + (dn — b)i}.

n=1

Taking absolute values of both sides, we get
[T (e a =22+ (@ =07} = T e —a) + (dn 1)}
n=1 n=1

Using |e"*| =1, we deduce at once that (¢ —a — \)? = (¢ —a)?ie., R(w) =a=
-2,

Case 2: k> 0. We aim to show that R(w) = —3. Since k > 0, the function
f has 0 as one of its roots and as f € SRP, we infer that all its roots have real

parts = 0. Since

AVJ(z) = 00 [T (- 252 ehstook T - 2,
n=1 " n=1 n

each root w = a +ib of A, f(z) satisfies

e"MMa+ N+ bi)* ﬁ {(=a = \) + (d, — b)i} = (a + bi)* ﬁ {—a+ (d, — b)i},

n=1 n=1

which yields after taking absolute on both sides

|€h’\‘2{(a+>\)2+b2}kH {(a+)\)2+(dn—b)2} :(a2+b2)kH {a2+(dn—b)2}.

n=1 n=1
Using |¢"*| =1, we deduce that (a + A)? = a?, and so R(w) =a = —3.
We conclude from both cases that Ay f(z) € SRP. O

Theorem 2.3. Let the notation be as set out in Section 1. Assume that or-

der (f)y=p=1 and p=1 so that by Hadamard’s theorem
it z z
_ hz+go .k 1— = -
Fl) = et U( Sew (2,
where h, gy € C.

(i) If f € SRP, k=0,
are purely imaginary), then Axf € SRP.

e’ =1 and ‘exp(%)’ =1 (i.e., all non-vanishing zeros
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(i) If f € SRP, k>0 and |e"| =1, then Axf € SRP.

Proof. Again we treat two separate cases depending on whether k£ = 0. Since f €

SRP, we can write the non-vanishing zeros of f as
Zn=c+dpi (c,d, € R).

Take aroot w=a+bi (a,b€R) of Ay\f.
Case 1: k=0. We aim to show that ®(w) = c— 3. Since

Arf(z) = (N +g0 ﬁ (1 _ %) exp (%) _ehztgo ﬁ (1 _ z%) exp (i) ’

n=1 n=1

each root w = a +ib of A f(z) satisfies

e H {(c—=a—X)+ (d, —b)i}exp (%) = H {(c—a)+ (d, —b)i}.

n=1

Taking absolute values of both sides, we get

|eh>‘|2 ]:[ {(cf a— )\)2 + (dy,, fb)Q} exp < )

H{cfa (d, —b)*}.

n=1

Using |e"| = 1 and ’eXp ‘ = 1, we deduce at once that (¢ —a — \)? =
(c —a)?jie, Rw) = a =c—3. Case 2: k > 0. We aim to show that
R(w) = —%. Since k > 0, the function f has 0 as one of its roots and as f €

SRP, we infer that all its roots have real parts = 0. Since

Anf(z) = ehEHNFa0 (5 4 N\ ﬁ (1 e+ /\)) exp ((z+ A))

Zn Zn

n=1

hz+gozk H <1 _ i) exp < c ) ,
Zn Zn

n=1

each root w = a +ib of A, f(z) satisfies

"Ma+A+bi)* ] {(—=a = A) + (dn — b)i} exp (;) = (a+bi)" [] {-a+ (dn — b)i},

n=1

()
exp | —
Zn

:(a2+b2)kn{a2+(dn—b)2}.

n=1

which yields after taking absolute on both sides

2

|eh)‘|2 {(a+N)? +b2}’“ ﬁ {(a+X)?+ (d, —b)*}

n=1
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Since z, = d,i, we have ‘exp (z%)‘ = 1. Using |eh>\} = 1, we deduce that
(a+A)? =a?, and so R(w) =a=—3.
We conclude from both cases that Ay f(z) € SRP. O

Theorem 2.3 can be stated in a slightly shorter version, by combining the two
possibilities, as: Assume that order (f) = p =1 and p = 1 so that by Hadamard’s

fz) = eh=too b ﬁ (1 - ;) exp (;) ;

n=1

theorem

where h,gyo € C. If f € SRP, all non-vanishing zeros of f are purely imaginary
and |eh>‘| =1, then Ayf € SRP.

3 Examples

In this section, we work out several examples starting with entire functions of
order 0 which extend the class obtained in [1]. The notation in Section 1 is being

kept here.

Example 3.1. (Functions of order < 1)

I. Polynomials of the form
flz)=(=+t)" (teR, neN),

have orders 0. The single root of f(z) is at z = —t so that trivially f € SRP.
Since
Az+t)"=EZ+A+0)"—(z+D)",

the roots w of Ax(z + )™ satisfy (w+ A+¢)" = (w+t)". It is easily checked
that these roots are

A A sin 22E
wp = —t—2 i (k=1,....n—1),
F 2 2(1—005%) ( )

all of which clearly have the same real part —t — %

II. The logarithmic function

f(z)=log(z"+1) (neN)
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has order 0. Its sole zero is at z = 0, so that this function belongs to SRP. The
roots w of Aylog(2? +1) =0, are

A Asin 27k
=i m  (k=1,...,n—1),
o 2 Z2(1—005%) ( n=1)
all of which have the same real part R(w) = —%-.

The next batch of examples are entire functions of order 1.

Example 3.2. (Functions of order 1)

I. The cosine function
. i 472
$te) = eostix) = IT (14 G T )

is entire of order 1 with genus p = 0. Here, h = 0 so that |eh)“ = 1. The zeros

of cos(iz) are

2n —1
Zn = —i% (neZ),
and so their real parts are equal to R(z,) = 0, showing that cos(iz) € SRP. The
roots w of
0= Ajcos(iz) = cos (i(z + A)) — cos(iz)
are

Wn = =5 —nwi (n €Z),

all of which have the same real parts equal to —%, and so Ay cos(iz) € SRP.

II. The sine function

n2m2

£(2) = sin(iz) = zzﬁ (1 L A2 )

is entire of order 1 with p = 0. Here, h = 0 so that |eh)" = 1. The same analysis
as in the last example shows that both sin(iz) and Ajsin(iz) are in SRP.

II1. The exponential function

f(z) =e*z
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is entire of order 1 with only a single zero at z = 0, and so it belongs to SRP with
p=0. Here, |¢"*| = 1. The roots w of 0 = Aye**z = eGHN (2 4 \) — €%z are

w——é—i—i Asin A
T2 "2 -9¢cos N\’

all of whose real parts are equal to —%, showing that Aye’?z € SRP.

IV. The exponential polynomial

F(2) = (2 + i) (2 — i) = ei* (1 + ;) (1 _ i)

7

is entire of order 1 and has two roots +i so that p = 0. Here,

e = 1. Let
w = a+ bi (a,b € R) be any root of Ayf. Solving Aye™(w +i)(w —1i) =0, we
get

eMw AN+ i) (w+ N —i) = (w+i)(w—1).

Taking absolute values of bothe sides leads to
((a+X2+0+1?) ((a+ 2>+ (0 -1)7%) = (> + 0+ 1)*) (a® + (b—1)?),
we deduce that (a + A\)? = a?, which in turns yields R(w) = a = —2, ie.

Axe*(z+1i)(z — i) € SRP.

V. The gamma function

1 ' 0o . B
f(z) = T02) = jze""* 711:[1 (1 + %) e~ n  (vy,Euler’s constant)

is entire of order 1, [3], p.90, and has roots at 0 and ni (n € N), so that p=1.
Here, ‘e”/\‘ =1 and ‘e_%‘ =1. Let w=a+bi (a,b € R) be any root of Ayf.
Solving Axiwe™ T2 | (1 + ) e= % =0, we get

zw+z)\ WAH n+iw +iA .
n + w
Taking absolute values of both sides leads to

(20 (et -

n=1

which in turns yields R(w) = a = -3, i.e., Apis F(w) € SRP.
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The next example shows that the condition on the absolute value of the expo-

nential factor cannot be dropped in general.
Example 3.3. The exponential polynomial
flz) =e*2"

is entire of order 1 and has a single root at 0 with multiplicity 2, so that p = 0.
Here, |¢*| # 1.The roots w of 0 = Aye*2? = e*™*(z + A)? — e72? are

showing,that Ae*z ¢ SRP.
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