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Abstract: The space of minimal prime ideals of an almost distributive lattice

(ADL) with zero, endowed with the hull kernel topology is shown to be a zero-

dimensional, totally disconnected Tychonoff space. Several characterizations of a

∗-ADL using the topological properties of the space of minimal prime ideals are

obtained. Necessary and sufficient conditions for the space of minimal prime ideals

of an ADL and the space of minimal prime ideals of its distributive lattice of all
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1 Introduction

Henrikisan and Jerison [2] investigated the space of minimal prime ideals of a com-

mutative ring extending the consideration of Kist [3] in the context of commutative

semigroup with 0. They succeeded in obtaining a sufficient condition for their re-

spective spaces to be compact. This work inspired Speed [8, 9] to investigate

minimal prime ideals of a distributive lattice with 0. Fortunately the nature of

lattice theoretic situation enabled Speed [8] to obtain much deeper results and he
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could characterized the compactness of the space of minimal prime ideals of a dis-

tributive lattice with 0 in a much more elegant manner. With an idea of bringing

a common abstraction to most of the existing ring theoretic and lattice theoretic

generalization of Boolean algebra, the concept of an Almost Distributive Lattice

(ADL) was introduced by Swamy and Rao in [10]. Hence it is worth studying the

properties of minimal prime ideals and the space of minimal prime ideals in an

ADL. All these considerations coupled with the properties of minimal prime ideals

of an ADL obtained by Rao in [7] motivate us to carry out a detailed investigation

of the space of minimal prime ideals of an ADL R with 0. The second section

deals with basic concepts and results of an ADL. The concluding section is devoted

to obtaining various characterizations of a ∗-ADL using topological properties of

the space of minimal prime ideals. For the congruence relation θ defined on an

ADL R with 0 by x ≡ y(θ) if and only if {x}∗ = {y}∗ (x, y ∈ R), it is proved

that the quotient ADL R/θ is a Boolean lattice if and only if the space of minimal

prime ideals of R is compact. Necessary and sufficient conditions for the space of

minimal prime ideals of an ADL R with 0 and the space of minimal prime ideals

of I(R) to be homeomorphic are furnished where I(R) denotes the lattice of all

ideals of R .

2 Preliminaries

At first we recall certain definitions and results mostly from [4], [5], [7] and [10]

that we need in the sequel. An Almost Distributive Lattice (ADL) is an algebra

(R,∨,∧, 0) of type (2, 2, 0) satisfying the following axioms:

1. a ∨ 0 = a,

2. 0 ∧ a = 0,

3. (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c),

4. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

5. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),

6. (a ∨ b) ∧ b = b, ∀ a, b, c ∈ R .

Throughout this paper, R stands for an ADL R with 0 unless otherwise men-

tioned. For any a, b ∈ R , define a ≤ b if and only if a = a ∧ b (or equivalently,
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a∨ b = b), then ≤ is a partial ordering on R . A non empty subset I of R is said

to be an ideal of R , if it satisfies the following conditions.

(i) a, b ∈ I ⇒ a ∨ b ∈ I and

(ii) a ∈ I, x ∈ R ⇒ a ∧ x ∈ I .

A proper ideal P of R is said to be prime if for any x, y ∈ R, x∧ y ∈ P ⇒ x ∈ P

or y ∈ P . A prime ideal P of R is called minimal if there exists no prime ideal

Q of R such that Q ⊆ P . A proper ideal M of R is said to be maximal if it

is not properly contained in any proper ideal of R . For a proper subset S ⊆ R

ideal generated by S in R is the smallest ideal of R containing S and is denoted

by (S] . For S = {a} it is simply denoted by (a] . For any non-empty subset A

of an ADL R , define A∗ = {x ∈ R | a ∧ x = 0, for all a ∈ A} . A∗ is called the

annihilator ideal of A . For x ∈ R, (x]∗ is called an annulet of R . An element

a ∈ R is called dense if (a]∗ = (0] . Dually we can define filter, prime filter,

minimal prime filter and maximal filter in R .

An equivalence relation θ on R is called a congruence relation if for all a, b, c, d ∈

R , a ≡ b(θ), c ≡ d(θ) ⇒ a ∧ c ≡ b ∧ d(θ), a ∨ c ≡ b ∨ d(θ). For any congruence

relation θ on R , we denote the congruence class containing x ∈ R by [x]θ and

the set of all congruence classes of R is denoted by R/θ .

We need the following lemmas in the sequel.

Lemma 2.1. [5] For any a, b, c ∈ R , we have the following:

1. a ∨ b = a ⇔ a ∧ b = b

2. a ∨ b = b ⇔ a ∧ b = a

3. ∧ is associative in R

4. a ∧ b ∧ c = b ∧ a ∧ c

5. (a ∨ b) ∧ c = (b ∨ a) ∧ c

6. a ∧ b = 0 ⇔ b ∧ a = 0

7. a ∧ (b ∨ a) = a ∧ (a ∨ b) = a

8. a ≤ a ∨ b and a ∧ b ≤ b

9. If a ≤ c, b ≤ c then a ∧ b = b ∧ a and a ∨ b = b ∨ a

10. a ∨ b = (a ∨ b) ∨ a
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Lemma 2.2. [5] For an ideal I of R and a, b ∈ R , a ∧ b ∈ I ⇔ b ∧ a ∈ I .

Lemma 2.3. [5] The set I(R) of all ideals of R is a complete distributive lattice

with the least element {0} and the greatest element R in which for any I, J ∈

I(R), I ∩ J = I ⊼ J is the infimum of I and J and the supremum is given by

I ⊻ J = {i ∨ j | i ∈ I, j ∈ J} .

Lemma 2.4. [7] Let P be a prime ideal of an ADL R . Then P is minimal if

and only if for each x ∈ P there exist y /∈ P such that x ∧ y = 0 .

Lemma 2.5. [7] Every prime ideal of R contains a minimal prime ideal.

Lemma 2.6. [7] A prime ideal P of an ADL R is minimal if and only if, for

each x ∈ P implies (x]∗ * P .

Lemma 2.7. For any 0 6= x ∈ R , there exists a maximal filter F such that

x ∈ F .

Lemma 2.8. [7] P is a minimal prime ideal if and only if R \ P is a maximal

filter.

Lemma 2.9. [6] The set D of all dense elements of R is a filter, provided D 6= ∅ .

Lemma 2.10. [7] If I is an ideal and F a filter of R such that I ∩ F = ∅ , then

there exists a prime filter G of R such that F ⊆ G and I ∩ G = ∅ .

Lemma 2.11. [5] The set A0(R) of all annulets of an ADL R forms a distributive

lattice under the binary operations ⊼ and ⊻ defined by (x]∗ ⊼ (y]∗ = (x ∨ y]∗ and

(x]∗ ⊻ (y]∗ = (x ∧ y]∗ for any (x]∗, (y]∗ ∈ A0(R) .

Lemma 2.12. [4] The set R/θ is an ADL, under the binary operations ∧ and ∨

defined by [x]θ∨[y]θ = [x∨y]θ and [x]θ∧[y]θ = [x∧y]θ for all [x]θ and [y]θ ∈ R/θ .

Lemma 2.13. [11] R is a ∗-ADL if and only if M(R) is a compact space.

3 The space of minimal prime ideals

Let M(R) be the set of all minimal prime ideals of R . For a subset A of M(R),

we write, as usual , the kernel of A = k(A) =
⋂

{B |B ∈ A} and for a subset

P 6= ∅ of R the hull of P = h(P ) = {M ∈ M(R) |P ⊆ M} . For P = {x}

we denote h({x}) by h(x) only. We may turn M(R) into a topological space
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by endowing it with the so called hull kernel topology which has the sets of the

form V (x) = {P ∈ M(R) |x /∈ P}(x ∈ R) as a base for the open sets. Obviously,

h(x) = M(R) \ V (x) and V (x) = V (y) if and only if {x}∗∗ = {y}∗∗ for all

x, y ∈ R . We commence with some important properties of the hull and kernel

in the space of minimal prime ideals M(R) of R . These properties are crucial

for characterizing a ∗- ADL. The proof of the next theorem can be gleaned from

the proofs of analogous results for a distributive lattice given in [2] and hence is

omitted.

Theorem 3.1. Following properties hold in R :

1. For any ideal I of R , I∗ = k(M(R) \ h(I)) .

2. For any non-empty subset A of R with A 6= {0} , we have A∗ = k (h(A∗)) .

3. A prime ideal M of R is minimal if and only if x∗ \M 6= ∅ , for all x ∈ M .

The following theorem is taken from [11].

Theorem 3.2. Following properties hold in R :

1. h (k(V (x))) = V (x) = h({x}∗) for each x ∈ R .

2. h(x) = h({x}∗∗) for each x ∈ R .

3. z∗ = x∗ ∩ y∗ if and only if h(z) = h(x) ∩ h(y) for x, y, z ∈ R .

4. {x}∗∗ = {y}∗ if and only if h(x) = h({y}∗) for x, y ∈ R .

Remark 3.3. (a) M(R) is a Hausdorff space (by Lemma 2.4)

(b) The space M(R) is totally disconnected as base sets of the space M(R) are

open as well as closed (by Theorem 3.2).

(c) The space M(R) is a zero dimensional space, as M(R) is a totally discon-

nected, Hausdorff space .

Theorem 3.4. The space M(R) is completely regular and hence a Tychonoff

space.
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Proof. Let M1 be any element of M(R) and F be any closed subset of M(R) not

containing the element M1 . Thus M1 is in an open subset M(R) \ F of M(R).

This implies that there exists a neighborhood V (x) of M1 contained in M(R)\F ,

for some x in R . Define a function f on M(R) as f(M) = 0 for M ∈ V (x) and

f(M) = 1 otherwise. We get f(M1) = 0 and f(F \ V (x)) = 1. The continuity of

f follows from from the fact that V (x) is both open and closed (by Theorem 3.2).

Thus the space M(R) is completely regular. As M(R) is a completely regular

Hausdorff space it is a Tychonoff space.

The next theorem deals with a property of an open set V (I), where I is an

ideal of R .

Theorem 3.5. For any ideal I in R , V (I) =
⋃

x∈I
V (x) =

⋃

x∈I
V ((x]∗∗) .

Proof. Let P ∈ V (I). Select x ∈ I such that x /∈ P . As x /∈ P implies

(x]∗∗ * P . Hence P ∈ V ((x]∗∗). This shows that V (I) ⊆
⋃

x∈I
V ((x]∗∗). Now if

P ∈
⋃

x∈I
V ((x]∗∗), then P ∈ V ((x]∗∗) for some x ∈ I . Thus (x]∗∗ * P . As P is

a minimal prime ideal, x /∈ P . But then I * P will imply P ∈ V (I). This shows
⋃

x∈I
V ((x]∗∗) ⊆ V (I). Hence V (I) =

⋃

x∈I
V ((x]∗∗).

Let P ∈ V (I). Then I * P and P ∈ M(R). Select x ∈ I such that x /∈ P .

Then P ∈ V (x) for x ∈ I . This in turn will imply V (I) ⊆
⋃

x∈I
V (x). Now if

P ∈
⋃

x∈I
V (x), then P ∈ V (x) for some x ∈ I . Then as x /∈ P , we get I * P .

Hence P ∈ V (I). This shows
⋃

x∈I
V (x) ⊆ V (I). Combining both the inclusions

we get V (I) =
⋃

x∈I
V (x).

A property of the set {V (x) |x ∈ R} is proved in the following theorem.

Theorem 3.6. Let {xr : r ∈ ∆} (∆ is any indexing set) be the set of elements

in R such that the collection {V (xr)} has the finite intersection property. Then

the intersection of all {V (xr)} is non-empty.

Proof. Since any finite intersection
⋂n

r=1
V (xr) is of the form V (y) where y =

x1 ∧ x2 ∧ · · · ∧ xn , it follows from the finite intersection property that the meet of

any finite number of xr , r ∈ ∆ is non-zero. Hence the collection of all the elements

xr , r ∈ ∆ together with their finite infima is a filter say F , in R . As 0 ∈ R , F

is contained in some maximal filter, say Q , in R . Therefore R \ Q is a minimal

prime ideal by Lemma 2.8. Since no xr is a member of R \ Q and R \ Q is a

member of M(R) we have R \Q ⊆
⋂

r∈∆
V (xr). Therefore

⋂

r∈∆
V (xr) 6= ∅ .
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4 Characterizations of a ∗-ADL

In this section we characterize ∗-ADL using the properties of the space of minimal

prime ideals.

Recall that an ADL R with 0 is a ∗-ADL if for each x ∈ R , there exist x′ ∈ R

such that (x]∗∗ = (x′]∗ . An ADL R with 0 is a ∗-ADL if and only if to each

x ∈ R , there exists x′ ∈ R such that x ∧ x′ = 0 and x ∨ x′ is dense (see [11]).

Example 4.1. Let X be any non-empty set. Fix x0 ∈ X . For any x, y ∈ X ,

define binary operations ∨ , ∧ on X by

x ∨ y =

{

x if x 6= x0

y if x = x0

x ∧ y =

{

y if x 6= x0

x0 if x = x0

Then (X,∨,∧, xo) is an ADL which is called a discrete ADL with zero x0 . If

x 6= x0 is any element of R then (x0]
∗ = (x]∗∗ and (x]∗ = (x0]

∗∗ , hence R is a

∗-ADL.

Example 4.2. Let R = {0, a, b, c} and define ∧ and ∨

∨ 0 a b c

0 0 a b c

a a a b b

b b b b b

c c b b c

∧ 0 a b c

0 0 0 0 0

a 0 a a 0

b 0 a b c

c 0 0 c c

Then R is an ADL. Also (0]∗ = (b]∗∗, (a]∗ = (c]∗∗, (b]∗ = (0]∗∗, (c]∗ = (a]∗∗ ,

hence R is a ∗-ADL.

Theorem 4.3. R is a ∗-ADL if and only if for each x ∈ R there exists y ∈ R

such that V (x) = h(y) .

Proof. Let R be a ∗-ADL. Fix up any x ∈ R as R is ∗-ADL there exists y ∈ R

such that {x}∗ = {y}∗∗ . Now by Theorem 3.2, we have V (x) = h({x}∗) =

h({y}∗∗) = h(y).

Conversely, suppose for each x ∈ R there exits y ∈ R such that V (x) = h(y).

Fix up any x ∈ R . By assumption there exists y ∈ R such that V (x) = h(y).

Therefore by Theorem 3.2, h({x}∗) = h(y) and hence {x}∗ = {y}∗∗ . This shows

that R is a ∗-ADL.
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From Theorem 4.3 we have

Corollary 4.4. R is a ∗-ADL if and only if {V (x) |x ∈ R} = {h(y) | y ∈ R} .

Proof. By Theorem 4.3, {V (x) |x ∈ R} = {h(y) | y ∈ R} implies R is a ∗-ADL.

Conversely, let R be a ∗-ADL. Select y ∈ R . R being a ∗-ADL, there exists x ∈ R

such that {y}∗ = {x}∗∗ . Then by Theorem 3.2, h(y) = h({y}∗∗) = h({x}∗) =

V (x). This shows that {h(y) | y ∈ R} ⊆ {V (x) |x ∈ R} . But {V (x) |x ∈ R} ⊆

{h(y) | y ∈ R} by Theorem 4.3. Combining both the inclusions we get {V (x) |x ∈

R} = {h(y) | y ∈ R} .

One more characterization of a ∗-ADL in terms of the set {V (x) |x ∈ R} is

given in the following theorem.

Theorem 4.5. R is a ∗-ADL if and only if < {V (x) |x ∈ R},∪,∩ > is a Boolean

lattice.

Proof. Let R be a ∗-ADL. Then for any x ∈ R , there exists y ∈ R such that

x ∧ y = 0 and x ∨ y is a dense element. Therefore V (x) ∩ V (y) = ∅ and V (x) ∪

V (y) = M(R). Hence (V (x))′ = V (y). This shows that the distributive lattice

< {V (x) |x ∈ R},∪,∩ > is a Boolean lattice.

Conversely, let < {V (x) |x ∈ R},∪,∩ > is a Boolean lattice. Select any x ∈ R .

Then for V (x) there exists y ∈ R such that (V (x))′ = V (y). Thus V (x)∩V (y) =

∅ ⇒ V (x∧y) = ∅ ⇒ x∧y = 0. Also V (x)∪V (y) = M(R) ⇒ V (x∨y) = M(R) ⇒

x ∨ y is a dense element. Hence R is a ∗-ADL.

Define a relation θ on R as x ≡ y(θ) if and only if {x}∗ = {y}∗ for x, y ∈ R .

Then θ is a congruence relation on R if R is a ∗-ADL. Using this fact we have

Theorem 4.6. In a ∗-ADL R , R/θ is isomorphic with {V (x) |x ∈ R} .

Proof. Define the map f : {V (x) |x ∈ R} → R/θ as f(V (x)) = [x]θ for each

x ∈ R . If V (x) = V (y) then {x}∗ = {y}∗ (by Theorem 3.2). Hence [x]θ =

[y]θ . This implies that f is well defined. Further f(V (x) ∩ V (y)) = f(V (x ∧

y)) = [x ∧ y]θ = [x]θ ∩ [y]θ = f(V (x)) ∩ f(V (y)) it follows that f is a meet

homomorphism. Similarly we can prove that f is a join homomorphism. Finally

if [x]θ = [y]θ then {x}∗ = {y}∗ and this will imply that V (x) = V (y) . Hence f

is an isomorphism.
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Let I(R) denote the set of all ideals in R . Then < I(R),⊼,⊻ > is a complete

pseudo-complemented distributive lattice. Where J ⊼K = J∩K , J ⊻K = (J∪K]

and J∗ = {x ∈ R |x ∧ j = 0 for each j ∈ J} for J,K ∈ I(R). For a prime ideal

P of I(R) , C(P) denotes the set theoretical union of all ideals (in R) which

are in P i.e. C(P) = ∪{J ∈ I(R) |J ∈ P} , while for a prime ideal Q in R ,

Γ(Q) denotes the set {J ∈ I(R) |J ⊆ Q} . It is easy to see that C(P) and

Γ(Q) are prime ideals of R and I(R) respectively. Let M(I(R)) denote the

space of minimal prime ideals in I(R) endowed with the hull kernel topology.

For this topology the set {U((a]) | a ∈ R} will form a base for open sets where

U((a]) = {P ∈ M(I(R)) | (a] /∈ P} . This space is a compact Hausdorff space by

[1, Lemma 1.4]. A sufficient condition for the space M(R) to be a continuous

image of the space M(I(R)) is given in the following lemma.

Lemma 4.7. Let R be an ADL such that C(P) ∈ M(R) for each P ∈ M(I(R)) .

Then the mapping φ : M(I(R)) → M(R) defined by φ(P) = C(P) , for each

P ∈ M(I(R)) is an onto continuous closed mapping.

Proof. Obviously, by the given condition φ is well defined map. Let Q ∈ M(R).

Then Γ(Q) is a prime ideal in I(R) and hence it contains a minimal prime ideal

P of I(R) (by Lemma 2.5). we claim that C(P) = Q . Let x ∈ C(P). Therefore

x ∈ J for some J ∈ P . As (x] ⊆ J and J ∈ P we get (x] ∈ P , P being an ideal

in I(R). Thus (x] ∈ Γ(Q), since P ⊆ Γ(Q). But then x ∈ Q and this shows

that C(P) ⊆ Q . Both C(P) and Q being minimal prime ideals in R , we get

C(P) = Q . This in turn shows that φ is an onto mapping. Select any a ∈ R .

Then

φ−1[V (a)] = φ−1{M ∈ M(R) | a /∈ M}

= {P ∈ M(I(R)) | a /∈ φ(P)}

= {P ∈ M(I(R)) | a /∈ C(P)}

= {P ∈ M(I(R)) | (a] /∈ P}

= U((a]).

Thus the inverse image of a basic open set in M(R) is again a open set in M(I(R)).

Hence φ is a continuous map. The space M(I(R)) is a compact space and M(R)

is a Hausdorff space. Hence the mapping φ being continuous, is a closed mapping.
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Using the continuity of the mapping φ defined in Lemma 4.7, we characterize

a ∗-ADL as follows.

Theorem 4.8. R is a ∗-ADL if and only if C(P) ∈ M(R) for each P ∈

M(I(R)) .

Proof. If Part : Let R be a ∗-ADL and let P ∈ M(I(R)). Select x ∈ C(P). As

x ∈ J for some J ∈ P we get (x] ⊆ J . P being an ideal in I(R), we get (x] ∈ P .

Again, R being a ∗-ADL, there exists x′ ∈ R such that x∧x′ = 0 and x∨x′ is a

dense element in R . But then (x]∨(x′] = (x∨ x′] is a dense element in I(R) and

hence can not be contained in P , P being a minimal prime ideal in I(R). Hence

(x′] /∈ P implies x′ /∈ C(P). Thus given x ∈ C(P), indeed there exists x′ /∈ C(P)

such that x ∧ x′ = 0. Hence the prime ideal C(P) is a minimal prime ideal of R

(by Lemma 2.4).

Only if part : Assume that C(P) ∈ M(R) for each P ∈ M(I(R)). Then by

Lemma 4.7, the mapping φ : M(I(R)) → M(R) defined by φ(P) = C(P) is an

onto continuous mapping. As M(I(R)) is a compact space (by [1, Lemma 1.4]) it

follows that M(R) is a compact space. Hence R is a ∗-ADL by Lemma 2.13.

If M(R) and M(I(R)) are homeomorphic, then R is a ∗-ADL (by proof of

”only if part” of Theorem 4.8). Again by Theorem 4.8 (if part) and Lemma 4.7, we

get for a ∗-ADL R the two spaces M(R) and M(I(R)) will be homeomorphic if

the mapping φ defined in Lemma 4.7, is one-one i.e. for a given Q ∈ M(R) there

exists unique P ∈ M(I(R)) such that C(P) = Q . We characterize this property

as follows.

Theorem 4.9. In an ADL R J∗∗ ∈ A0(R) , for each J ∈ I(R) , if and only if R

is a ∗-ADL and for each Q ∈ M(R) there exists unique P in M(I(R)) such that

C(P) = Q .

Proof. Let for each J ∈ I(R), J∗∗ ∈ A0(R). Select x ∈ R . Particularly

taking J = (x]∗∗ we get J∗∗ = (x]∗∗ ∈ A0(R). Hence there exists x′ ∈ R

such that (x]∗∗ = (x′]∗ . This shows that R is a ∗-ADL. Let Q ∈ M(R) and

P1,P2 ∈ M(I(R)) such that Q = C(P1) = C(P2). Let J ∈ P1 . Then J∗ ∈ I(R)

and J ∩ J∗ = (0]. P1 ∈ M(I(R)) and J ∈ P1 imply J∗ /∈ P1 (by Lemma 2.6).

By the given condition , [J∗]∗∗(= J∗) ∈ A0(R). Hence there exists y ∈ R such

that J∗ = (y]∗ . Again P1 ∈ M(I(R)) and J ∈ P1 ⇒ J∗∗ ∈ P1 (by Lemma 2.6).

Hence (y]∗∗ ∈ P1 . As (y] ⊆ (y]∗∗ ∈ P1 we get (y] ∈ P1 . But then y ∈ C(P1)
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and y ∈ C(P2) as C(P1) = C(P2). Therefore y ∈ K for some K ∈ P2 . Hence

(y] ⊆ K , K ∈ P2 imply (y] ∈ P2 , P2 being an ideal in I(R). But then (y]∗∗ ∈ P2

as P2 ∈ M(I(R)) (by Lemma 2.6). As J ⊆ J∗∗ = (y]∗∗ we get J ∈ P2 as

(y]∗∗ ∈ P2 and P2 is an ideal in R . This shows that P1 ⊆ P2 . Both being

minimal prime ideals in I(R), we get P1 = P2 . Thus for given Q ∈ M(R), there

exists unique P ∈ M(I(R)) such that C(P) = Q .

Conversely, let R be an ∗-ADL such that for each Q ∈ M(I(R)), there exists

unique P in M(I(R)) such that C(P) = Q . This in turn gives that C(P1) =

C(P2) ⇒ P1 = P2 for P1,P2 ∈ M(I(R)), by Theorem 4.8. But then the map-

ping φ : M(I(R)) → M(R) defined by φ(P) = C(P) is a homeomorphism (by

Lemma 4.7 and Theorem 4.8). M(I(R)) is an extremally disconnected space (by

[1, Lemma 1.4]). But then M(R) is also extremally disconnected. R being an

∗-ADL, M(R) is a compact space (by Theorem ??). Let J ∈ I(R). Then h(J∗)

is both open and closed in M(R). Hence M(R) \ h(J∗) being open in M(R)

can be expressed as a union of basic open sets. Again M(R) is compact and

M(R)\h(J∗) is a closed subset of M(R) will imply M(R)\h(J∗) is itself compact.

Hence M(R) \ h(J∗) =
⋃n

i=1
V (ai). Define y =

∨n

i=1
ai . Then M(R) \ h(J∗) =

V (y) = M(R) \ V ((y]∗) = h((y]∗) = M(R) \ h(y) = M(R) \ h({y}∗∗). Hence

h(J∗) = h({y}∗∗) i.e. k(h(J∗)) = k(h({y}∗∗)). Therefore J∗ = {y}∗∗ . Hence

J∗∗ ∈ A0(R)

The conjunction of Lemma 4.7, Theorem 4.8 and Theorem 4.9 yields a result

analogous to [1, Theorem 2.3] proved by Cornish for a 0-distributive lattice.

Theorem 4.10. Following statements are equivalent in R .

1. M(R) is a compact, Hausdorff and extremally disconnected space.

2. The space M(R) and M(I(R)) are homeomorphic.

3. For each J ∈ I(R) , J∗∗ ∈ A0(R) .

If the family {h(x) |x ∈ R} is considered as an open basis for M(R), the

resulting topology is called the dual hull kernel topology. We denote by τh the

hull kernel topology on M(R) and by τd the dual hull kernel topology on M(R).

We know that {h(x) |x ∈ R} is an open basis for the dual hull kernel topology.

Now as h(x) = M(R)\V (x) for any x in R and by Theorem 3.2, V (x) is a closed

in M(R) we get every basic open set in the dual hull kernel topology is open in

the hull kernel topology. Hence τh is finer than τd .



34 Chamchuri J. Math. 4(2012): Y.S. Pawar and I.A. Shaikh

As a consequence of the results proved in this section and in [11] we obtain

Theorem 4.11. The following statements are equivalent in R .

1. R is a ∗-ADL.

2. The space M(R) is compact.

3. τh = τd .

4. {V (x) |x ∈ R} = {h(y) | y ∈ R} .

5. < {V (x) |x ∈ R},∪,∩ > is a Boolean lattice.

6. R/θ is a Boolean lattice, where θ is the congruence relation on R defined

on R by x ≡ y(θ) if and only if {x}∗ = {y}∗ (x, y ∈ R) .

7. C(P) ∈ M(R) for each P ∈ M(I(R)) .
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