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Abstract: The class of normal almost distributive lattices is characterized in

terms of their O-ideals. Later, existence of the greatest O-ideal contained in a
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Introduction

In 1981, the notion of Almost Distributed Lattices(ADLs) was first introduced

by U.M. Swamy and G.C. Rao [7]. Recently in 2009, the class of normal ADLs was

introduced by G.C. Rao and S. Ravikumar [6]. In the paper [4], the authors intro-

duced the concept of O-ideals in an ADL and characterized in terms of minimal

prime ideal. It was also observed that the class of O-ideal is not a sublattice of

the ideal lattice. In this paper, the main emphasis is given to this feature. A set of

equivalent conditions are derived for the class of all O-ideals of an ADL to become
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a sublattice of the ideal lattice, which leads to a characterization of normal ADLs.

As a consequence of this result, it is then obtained, the existence of the greatest

O-ideal contained in a given ideal. Later, the concept of O-almost distributive

lattices is introduced. It is then proved that every O-ADL is a generalized Stone

ADL. Finally, a necessary and sufficient condition is derived for every generalized

Stone ADL to become an O-ADL.

1 Preliminaries

In this section, we present some definitions and important results taken mostly

from [2], [4], [5], [7] and [8] those will be required in the text of the paper.

Definition 1.1. [7] An Almost Distributive Lattice(ADL)with zero is an algebra

(L,∨,∧, 0) of type (2,2,0) satisfies the following properties:

1. (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)

2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

3. (x ∨ y) ∧ y = y

4. (x ∨ y) ∧ x = x

5. x ∨ (x ∧ y) = x

6. 0 ∧ x = 0 for any x, y, z ∈ L

Let X be a non-empty set and x0 ∈ X a fixed element. Then for any x, y ∈ X ,

define x ∨ y = y for x = x0 , otherwise x ∨ y = x . Also x ∧ y = x0 for x = x0 ,

otherwise x∧y = y . Then clearly (X,∨,∧, x0) is an ADL with x0 as zero element

and is called a discrete ADL. If (L,∨,∧, 0) is an ADL, for any a, b ∈ L , define

a ≤ b if and only if a = a ∧ b ( or equivalently, a ∨ b = b ), then ≤ is a partial

ordering on L . Throughout this paper, L stands for an ADL (L,∨,∧, 0).

Theorem 1.2. [7] For any a, b, c ∈ L , we have the following.

1. a ∨ b = a ⇔ a ∧ b = b

2. a ∨ b = b ⇔ a ∧ b = a

3. a ∧ b = b ∧ a whenever a ≤ b

4. ∧ is associative in L

5. a ∧ b ∧ c = b ∧ a ∧ c

6. (a ∨ b) ∧ c = (b ∨ a) ∧ c

7. a ∧ b = 0 ⇔ b ∧ a = 0

8. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
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9. a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b, and a ∨ (b ∧ a) = a

10. a ≤ a ∨ b and a ∧ b ≤ b

11. a ∧ a = a and a ∨ a = a

12. 0 ∨ a = a and a ∧ 0 = 0 .

An element m ∈ L is called maximal if it is maximal in the partial ordered set

(L,≤)[7]. That is, for any x ∈ L,m ≤ x ⇒ m = x.

Theorem 1.3. [7] For any m ∈ L , the following conditions are equivalent.

1). m is a maximal element with respect to ≤

2). m ∨ x = m, for all x ∈ L

3). m ∧ x = x, for all x ∈ L .

A non-empty subset I of L is called an ideal(filter)[7] of L if a∨b ∈ I(a∧b ∈ I)

and a∧ x ∈ I(x∨ a ∈ I) whenever a, b ∈ I and x ∈ L . The set I(L) of all ideals

of L is a complete distributive lattice with the least element {0} and the greatest

element L under set inclusion in which, for any I, J ∈ I(L), I ∩J is the infemum

of I, J and the supremum is given by I ∨ J = { i ∨ j | i ∈ I, j ∈ J } . An ideal I

of L is called proper if I 6= L . An ideal I of an ADL L is called a direct factor of

L if there exists an ideal J of L such that I ∩ J = {0} and I ∨ J = L . For any

a ∈ L , (a] = { a∧ x | x ∈ L } is the principal ideal generated by a . Similarly, for

any a ∈ L, [a) = { x ∨ a | x ∈ L } is the principal filter generated by a . The set

PI(L) of all principal ideals is a sublattice of I(L). A proper ideal P is said to

be prime if for any x, y ∈ L , x ∧ y ∈ P ⇒ x ∈ P or y ∈ P . A subset P of L is

a prime ideal if and only if L − P is a prime filter. A prime ideal P is called a

minimal prime ideal[5] if there is no prime ideal Q such that Q ⊂ P . A proper

filter M of L is maximal if and only if L − M is a minimal prime ideal.

Theorem 1.4. [5] A prime ideal P of an ADL L is a minimal prime ideal if

and only if to each x ∈ P there exists y /∈ P such that x ∧ y = 0 .

For any A ⊆ L , A∗ = { x ∈ L | a ∧ x = 0 for all a ∈ A } is an ideal of L . We

write (a]∗ for {a}∗ and is called an Annulet [3]. Clearly (0]∗ = L and L∗ = (0].

Lemma 1.5. [2] For any two ideals I , J of L , we have the following:

1). If I ⊆ J , then J∗ ⊆ I∗

2). I ⊆ I∗∗

3). I∗∗∗ = I∗

4). (I ∨ J)∗ = I∗ ∩ J∗
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Definition 1.6. [4] For any filter F of an ADL L , define the set O(F ) = { x ∈

L | x ∧ f = 0 for some f ∈ F } =
⋃

x∈F

(x]∗ .

Lemma 1.7. [4] For any two filters F,G of L , we have the following:

(a). O(F ) is an ideal of L

(b). F ⊆ G implies O(F ) ⊆ O(G)

(c). O(F ∩ G) = O(F ) ∩ O(G) .

An ideal I of an ADL is called an O-ideal [4] if I = O(F ), for some filter F

of L . An element x ∈ L is called dense [9] if (x]∗ = (0]. An ADL L is called

a generalized Stone ADL[3] if (x]∗ ∨ (x]∗∗ = L for each x ∈ L . An ADL L is a

normal ADL [6] if and only if (x]∗ ∨ (y]∗ = L for all x, y ∈ L with x ∧ y = 0 if

and only if (x]∗ ∨ (y]∗ = (x ∧ y]∗ for all x, y ∈ L .

2 Characterization of normal ADLs

In this section, some properties of O-ideals are studied. A set of equivalent

conditions are established for the class of all O-ideals of an ADL to become a

sublattice to the ideal lattice, which leads to a characterization of Normal ADLs.

We first prove some lemmas which we need.

Lemma 2.1. For any filter F of an ADL L and x ∈ L , we have the following

(i) . O([x)) = (x]∗

(ii) . F ∩ O(F ) 6= ∅ implies that F = O(F ) = L .

Proof. (i). It is clear that (x]∗ ⊆ O([x)). Conversely, let t ∈ O([x)). Then

t ∧ a = 0 for some a ∈ [x). Hence we get a ∧ x = x . Now t ∧ x = t ∧ a ∧ x = 0.

(ii). Suppose x ∈ F ∩O(F ). Then we get x ∈ F and x∧ f = 0 for some f ∈ F .

Since x, f ∈ F , we get that 0 = x ∧ f ∈ F . Therefore F = O(F ) = L .

Lemma 2.2. Every proper O-ideal is contained in a minimal prime ideal.

Proof. Let J be a proper O-ideal of L . Then J = O(F ) for some filter F of

L . Clearly J ∩ F = O(F ) ∩ F = ∅ . Let = = {G | G is a filter such that F ⊆

G and J ∩G = ∅} . Clearly F ∈ = and = satisfies the Zorn’s lemma. Let M be a

maximal element of = . We now claim that M is a maximal filter of L . Suppose

M0 is a proper filter of L such that M ⊂ M0 . By the maximality of M and
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F ⊆ M ⊂ M0 , we can get J ∩ M0 6= ∅ . Choose x ∈ J ∩ M0 . Then we can get

x ∧ y = 0 for some y ∈ F . Hence x ∈ M0 and y ∈ F ⊆ M ⊂ M0 implies that

0 = x ∧ y ∈ M0 . Which is a contradiction. Thus M is a maximal filter such that

J ∩M = ∅ . Therefore L−M is a minimal prime ideal such that J ⊆ L−M .

Let us denote the set of all O-ideals of L by I0(L). In [4], it was proved that

the intersection of O-ideals is again an O-ideal. But, in general, the join of two

O-ideals need not be an O-ideal. It can be seen in the following example.

Example 2.3. Consider the distributive lattice L = {0, a, b, c, 1} whose Hasse

diagram is given in the figure 2.4.
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Consider the ideals I = {0, a} and J = {0, b} .

Clearly F = {b, c, 1} and G = {a, c, 1} are filters in L .

Now O(F ) = {0, a} = I and

O(G) = {0, b} = J . So I, J are O-ideals of L .

But I ∨ J = {0, a, b, c} is not an O-ideal,

because c ∈ L and (c]∗ = {0} .

Thus I ∨ J is not an O-ideal in L .

Therefore I0(L) is not a sublattice of I(L). Figure 2.4

However, we have the following.

Theorem 2.4. The following conditions are equivalent in an ADL L .

(a). L is normal

(b). For any two filters F,G of L , F ∨ G = L implies O(F ) ∨ O(G) = L

(c). For any two filters F,G of L , O(F ) ∨ O(G) = O(F ∨ G)

(d). I0(L) is a sublattice of I(L)

Proof. (a) ⇒ (b): Assume that L is normal. Let F,G be two filters of L such

that F ∨G = L . Hence we can have 0 = f ∧ g for some f ∈ F and g ∈ G . Since

L is normal, f ∈ F and g ∈ G , we can get that L = (f ]∗ ∨ (g]∗ ⊆ O(F ) ∨ O(G).

(b) ⇒ (c): Let F,G be two filters of L . We have always O(F )∨O(G) ⊆ O(F ∨G).

Let x ∈ O(F ∨ G). Then x ∧ a = 0 for some a ∈ F ∨ G . Now

a ∈ F ∨ G ⇒ x ∧ (f ∧ g) = 0 where f ∈ F and g ∈ G

⇒ [(x ∧ f) ∧ (x ∧ g)) = [0)
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⇒ [x ∧ f) ∨ [x ∧ g) = L

⇒ O([x ∧ f)) ∨ O([x ∧ g)) = L

⇒ (x ∧ f ]∗ ∨ (x ∧ g]∗ = L

Hence x ∈ (x∧ f ]∗ ∨ (x∧ g]∗ . Thus x = a∨ b where a ∈ (x∧ f ]∗ and b ∈ (x∧ g]∗ .

Now

x = x ∧ x

= x ∧ (a ∨ b)

= (x ∧ a) ∨ (x ∧ b)

∈ (f ]∗ ∨ (g]∗ since a ∈ (x∧ f ]∗ , b ∈ (x∧ g]∗

⊆ O(F ) ∨ O(G) since f ∈ F and g ∈ G

Hence we get that O(F ∨G) ⊆ O(F )∨O(G). Therefore O(F ∨G) = O(F )∨O(G).

(c) ⇒ (d): It is obvious.

(d) ⇒ (a): Assume that I0(L) is a sublattice of I(L). Let x, y ∈ L be such that

x ∧ y = 0. Suppose (x]∗ ∨ (y]∗ 6= L . Since (x]∗, (y]∗ are O-ideals, by hypothesis

we get that (x]∗ ∨ (y]∗ is a proper O-ideal. Hence by Lemma 1.2, there exists a

minimal prime ideal P such that (x]∗ ∨ (y]∗ ⊆ P . Hence (x]∗ ⊆ P and (y]∗ ⊆ P .

Since P is a minimal prime ideal, we get that x /∈ P and y /∈ P . Since P is

prime, we get that 0 = x∧ y /∈ P . Which is a contradiction. Hence we must have

(x]∗ ∨ (y]∗ = L . Therefore L is normal.

Corollary 2.5. Let L be a normal ADL and {Iα} an arbitrary family of O-ideals

in L . Then
∨

α
Iα is an O-ideal in L .

Proof. Let Iα = O(∨Fα) where Fα is a family of filters of L . Clearly ∨Iα ⊆

O(∨Fα). Conversely, let x ∈ O(∨Fα). Then x∧ f = 0 for some f ∈ ∨Fα . Hence

f = f1 ∧ f2 ∧ ..... ∧ fn for some fi ∈ Fαi
. Now

x ∧ f = 0 ⇒ x ∧ f1 ∧ f2 ∧ ..... ∧ fn = 0

⇒ (x ∧ f1) ∧ (x ∧ f2) ∧ .....(x ∧ fn) = 0

⇒ [x ∧ f1) ∨ [x ∧ f2) ∨ ..... ∨ [x ∧ fn) = L

⇒ O([x ∧ f1)) ∨ O([x ∧ f2)) ∨ ..... ∨ O([x ∧ fn)) = L

⇒ (x ∧ f1]
∗ ∨ (x ∧ f2]

∗ ∨ ..... ∨ (x ∧ fn]∗ = L

Hence we get x = a1 ∨ a2 ∨ ..... ∨ an where ai ∈ (x ∧ fi]
∗ . Now x = x ∧ x =

(a1∨a2∨.....∨an)∧x = (a1∧x)∨(a2∧x)∨.....∨(an∧x) ∈ (f1]
∗∨(f2]

∗∨.....∨(fn]∗ ⊆

O(Fα1
) ∨ O(Fα2

) ∨ .....O(Fαn
) ⊆

∨
Iα . Thus the proof is completed.
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In view of the above theorem, we now obtain the existence of the greatest O-

ideal contained in a given ideal of a normal ADL, in the following theorem.

Theorem 2.6. Let L be a normal ADL. Then for any ideal I which contains an

O-ideal K , there exists a largest O-ideal containing K and contained in I .

Proof. Let I be an arbitrary ideal of L containing an O-ideal K of L . Then

consider the set =K = { J | J is an O-ideal such that K ⊆ J ⊆ I } . Clearly

K ∈ =K . Let {Ji}i∈∆ be a chain in =K . Then clearly
⋃

Ji is an O-ideal and

K ⊆
⋃

Ji ⊆ I . So, by Zorn’s lemma, =K has a maximal element, say M . We

now prove that M is unique. Suppose M1 and M2 are two maximal elements of

=K . Then clearly K ⊆ M1 ∨ M2 ⊆ I . Since L is normal, by Theorem 1.5, we

get that M1 ∨ M2 ∈ =K . Thus we can obtain M1 = M1 ∨ M2 = M2 . Therefore

there is a unique maximal element in =K which is the required largest O-ideal

contained in I and containing K .

If L has dense elements, then it was observed in [4] that {0} is an O-ideal.

Hence by replacing the arbitrary O-ideal K of the above theorem by the O-ideal

{0} , the following corollary is a direct consequence.

Corollary 2.7. Let L be a normal ADL with dense elements. Then for any ideal

I of L , there exists the greatest O-ideal contained in I .

Let us denote that I0 is the greatest O-ideal of L contained in a given ideal

I . Then we characterize the elements of this I0 in the following theorem.

Theorem 2.8. Let L be a normal ADL with dense elements. For any ideal I

I0 = { x ∈ L | (x]∗ ∨ I = L }

Proof. It can be easily observed that I0 is an ideal of L such that I0 ⊆ I . Consider

F = { x ∈ L | (x]∗∗ ∨ I = L } . It can be easily observed that F is a filter in L

and I0 = O(F ). Let J be an O-ideal of L such that J ⊆ I . Since J is an O-

ideal, we get J = O(G) for some filter G of L . Let x ∈ J . Then x ∧ g = 0 for

some g ∈ G . Since L is normal, we get (x]∗ ∨ (g]∗ = L . Then

L = (x]∗ ∨ (g]∗ ⊆ (x]∗ ∨ O(G) = (x]∗ ∨ J ⊆ (x]∗ ∨ I

Hence we get that x ∈ I0 . Therefore I0 is the greatest O-ideal contained in I .
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3 O-Almost Distributive Lattices

In this section, the concept of an O-Almost Distributive Lattice(simply O-ADL)

is introduced. It is proved that the class of all generalized Stone ADLs properly

includes the class of all O-ADLs. A necessary and sufficient condition is derived

for every generalized Stone ADL to become an O-ADL.

Definition 3.1. An ADL L is called an O-ADL if it satisfies the property.

O(F ) ∨ O(F )∗ = L for every filter F of L

In general, the property O(F )∨O(F )∗ = L , (for every filter F ), need not be

hold even in a distributive lattice. It can be observed in the example 2.3. Consider

the filter F = {b, c, 1} of L . Then O(G) = {0, a} and hence O(G)∗ = {0, b} .

Hence O(F ) ∨ O(F )∗ = {0, a} ∨ {0, b} = {0, a, b, c} 6= L . Therefore L is not an

O-ADL. However, an example for an O-ADL is given in the following.

Example 3.2. Let A = {0, a} and B = {0, b1, b2} be two discrete ADLs. Write

L = A × B = {(0, 0), (0, b1), (0, b2), (a, 0), (a, b1), (a, b2)} . Then (L,∨,∧, 0′) is

an ADL where the zero element is 0′ = (0, 0), under point-wise operations. It

can be easily observed that F1 = {(a, b1), (a, b2)}, F2 = {(a, 0), (a, b1), (a, b2)} ,

F3 = {(0, b1), (0, b2), (a, b1), (a, b2)} are the only filters of L . Now we can get

that O(F1) = {(0, 0)} and O(F1)
∗ = L . O(F2) = {(0, 0), (0, b1), (0, b2)} and

O(F2)
∗ = O(F3). O(F3) = {(0, 0), (a, 0)} and O(F3)

∗ = O(F2). Also observe

that O(Fi) ∨ O(Fi)
∗ = L for i = 1, 2, 3. Hence L is an O-ADL.

Remark. By the definition of an O-ADL, it can be observed that every O-ideal

is a direct factor of L . Conversely, let F be a filter of L . Then O(F ) is an

O-ideal of L . Then there exists an ideal J of L such that O(F ) ∩ J = (0]

and O(F ) ∨ J = L . Now O(F ) ∩ J = (0] implies that J ⊆ O(F )∗ . Hence

L = O(F ) ∨ J ⊆ O(F ) ∨ O(F )∗ . Therefore L is an O-ADL.

Theorem 3.3. Every O-ADL is a generalized Stone ADL.

Proof. Assume that L is an O-ADL. Let x ∈ L . Clearly (x]∗ is an O-ideal.

Hence by above remark, there exists an ideal J of L such that (x]∗ ∩ J = (0] and

(x]∗ ∨ J = L . Since (x]∗ ∩ J = (0], we get that J ⊆ (x]∗∗ . Now we can obtain

L = (x]∗ ∨ J ⊆ (x]∗ ∨ (x]∗∗ . Therefore L is a generalized Stone ADL.

Since every generalized Stone ADL is a normal ADL[3]the following corollary

is a direct consequence of the above theorem.
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Corollary 3.4. Every O-ADL is normal.

But the converse of above theorem 3.3 is not true. However, we give a sufficient

condition for a generalized Stone ADL to become an O-ADL.

Theorem 3.5. A generalized Stone ADL in which every filter is a principal filter,

is an O-ADL.

Proof. Let L be a generalized Stone ADL in which every filter is a principal filter.

Let F be a filter of L . Then F = [a) for some a ∈ L . Now O(F ) ∨ O(F )∗ =

O([a)) ∨ O([a))∗ = (a]∗ ∨ (a]∗∗ = L . Therefore L is an O-ADL.

Moreover, if L has a maximal element, then we derive a necessary and sufficient

condition for every generalized Stone ADL to become an O-ADL.

Theorem 3.6. A generalized Stone ADL with a maximal element m is an O-

ADL if and only if every O-ideal is an annulet.

Proof. Let L be a generalized Stone ADL. Assume that L is an O-ADL. Let I

be an O-ADL of L . Then I = O(F ) for some filter F of L . Since L is an O-

ADL, we get I ∨ I∗ = L . Hence m = a ∨ b for some a ∈ I and b ∈ I∗ . Since

b ∈ I∗ , we get I ⊆ I∗∗ ⊆ (b]∗ . Again, let c ∈ (b]∗ . Now c = m ∧ c = (a ∨ b) ∧ c =

(a ∧ c) ∨ (b ∧ c) = a ∧ c ∈ I . Hence I = (b]∗ . Conversely, assume that each O-

ideal is an annulet. Let F be a filter of L . Then O(F ) = (x]∗ for some x ∈ L .

Hence O(F ) ∨ O(F )∗ = (x]∗ ∨ (x]∗∗ = L . Therefore L is an O-ADL.

In the light of the results discussed above, we would like to conclude that the

properties of O-ideals provide scope for the further investigations and particularly

the nature of primeness of O-ideals may leads to some more results.
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