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Abstract: Let Ω denote the set of monic polynomials over a finite field and let

A(Ω) be the ring of arithmetic functions f : Ω → C . We construct a generalized

Möbius functions in A(Ω) and use it to characterize completely multiplicative

functions in A(Ω).
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1 Introduction

In the classical case, Hsu [2], see also [9], [1], introduced the SHM (Souriau-Hsu-

Möbius) function

µα(n) =
∏

p|n

(

α

νp(n)

)

(−1)νp(n),

where α ∈ R , and n =
∏

p prime pνp(n) denotes the unique prime factorization of

n ∈ N, νp(n) being the largest exponent of the prime p that divides n . This

function generalizes the usual Möbius function, µ , because µ1 = µ . Using the
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generalized Möbius function, Laohakosol et al [4], gave two characterizations of

completely multiplicative functions. Save a minor condition, they read (µαf)−1 =

µ−αf and fα = µ−αf , where fα is the αth power function.

By a polynomial-arithmetic function, [8], we mean a mapping f from the set,

Ω, of all monic polynomials over a finite field Fpn , where p is a prime and n ∈ N

[7], into the field of complex numbers C . Let (A (Ω) ,+, ∗) denote the set of all

polynomial-arithmetic functions equipped with addition and Dirichlet convolution

defined over Ω, respectively, by

(f + g) (M) = f (M) + g (M)

(f ∗ g) (M) =
∑

D|M

(Ω)
f (D) g

(

M

D

)

for all M ∈ Ω, where the summation is over all D ∈ Ω which are divisors of M . As

in the case of classical arithmetic functions, it is easy to check that (A (Ω) ,+, ∗) is

an integral domain with identity IΩ ([8]), defined by

IΩ (M) =







1 if M = 1Ω

0 otherwise,

where 1Ω is the identity element in Fpn .

Throughout, the notation
∑(Ω)

signifies a summation taken over monic poly-

nomials in Ω.

The polynomial-Möbius function is defined, [3], by

µΩ (M) =



























1 if M = 1Ω,

0 if P 2|M, P irreducible element of Ω,

(−1)
t

if M = P1P2 · · ·Pt, a product of distinct irreducible

elements of Ω.

A function f ∈ A(Ω) is said to be multiplicative if

f (MN) = f (M) f (N) (1)

whenever (M,N) = 1Ω and f is said to be completely multiplicative if (1) holds

for all pairs of polynomials M,N [8]. Further, f (1Ω) = 1 if f is multiplicative.

It is clear that µΩ is multiplicative.

The objective of this paper is to construct generalized polynomial-Möbius func-

tions and establish some characterizations of completely multiplicative functions

in A(Ω) using these functions.



Characterizing Completely Multiplicative Polynomials-Arithmetic Functions by ... 37

2 Preliminaries

We have shown in [3], that the set

U (Ω) := {f ∈ A (Ω) : f (1Ω) 6= 0}

is the set of all units in A (Ω). That is, for every f ∈ U(Ω), there is f−1 ∈ A(Ω),

the inverse of f with respect to the Dirichlet convolution, such that f ∗ f−1 = IΩ

and

f−1 (1Ω) =
1

f (1Ω)
, f−1 (M) =

−1

f (1Ω)

(Ω)
∑

D|M,D 6=1Ω

f (D) g

(

M

D

)

(M ∈ Ω\ {1Ω}).

It is easy to see that (U (Ω) , ∗) is an abelian group with identity IΩ and the set

of multiplicative functions forms a subgroup of U (Ω). Note that u−1 = µΩ , [8],

where u is a unit function (u(M) = 1 M ∈ Ω).

An arithmetic function a ∈ A (Ω) is completely additive if a (MN) = a (M) +

a (N) for all M,N ∈ Ω [3]. Note that if a ∈ A (Ω) is completely additive, then

a (1Ω) = 0.

Let

A1 (Ω) = {f ∈ A (Ω) : f (1Ω) ∈ R} and P (Ω) = {f ∈ A (Ω) : f (1Ω) > 0} ⊆ U (Ω) .

Definition 2.1. ([3]) Let a ∈ A (Ω) be a completely additive arithmetic function

for which a (M) 6= 0 for all M ∈ Ω\ {1Ω} . The polynomial-logarithmic operator

(associated with a) is the map LogΩ : P (Ω) → A1 (Ω), defined by

LogΩ f (1Ω) = logf (1Ω) ,

LogΩ f (M) =
1

a (M)

∑

D|M

(Ω)
f (D) f−1

(

M

D

)

a (D) (2)

for all M ∈ Ω\ {1Ω} where the right-hand side of the first equation denotes the

real logarithmic value.

In the classical case, this logarithmic operator was first introduced by Rearick

([5],[6]). We have shown in [3], that LogΩ is a bijection of P(Ω) onto A1 (Ω) and

LogΩ (f ∗ g) = LogΩ f + LogΩ g (f, g ∈ A(Ω)). (3)

Therefore, it is possible to define a polynomial-exponential operator

ExpΩ : A1 (Ω) → P (Ω)
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as ExpΩ = (LogΩ)−1 . For f ∈ P (Ω) and α ∈ R , the αth polynomial-power

function is defined as

fα = ExpΩ(αLogΩ f). (4)

Clearly, f0 = IΩ and f1 = f . For r ∈ N , using (3) and (4), we obtain

fr = ExpΩ(rLogΩ f)

= ExpΩ(LogΩ f + · · · + LogΩf)

= ExpΩ(LogΩ (f ∗ · · · ∗ f))

= f ∗ · · · ∗ f (r factors). (5)

We can show similarly that

f−r = f−1 ∗ f−1 ∗ · · · ∗ f−1 (r factors).

Let a be a completely additive arithmetic function for which a (M) 6= 0 for all

M ∈ Ω\ {1Ω} . It follows from (2) that

aLogΩ f = f−1 ∗ fa. (6)

If we replace f with ExpΩ f in (6), we obtain

aExpΩ f = ExpΩf ∗ fa.

Therefore ExpΩf is uniquely determined by the formulas

ExpΩf (1Ω) = exp(f (1Ω)),

ExpΩf (M) =
1

a (M)

∑

D|M

(Ω)
ExpΩ f (D) f

(

M

D

)

a

(

M

D

)

(7)

for all M ∈ Ω\ {1Ω} . From (4), (7) and (2), it is not difficult to prove that for

fixed M ∈ Ω, the expression fα(M) = ExpΩ(αLogΩ f)(M) is a polynomial in α .

3 Main Results

It is well-known that, each nonconstant monic polynomial M ∈ Ω can be uniquely

written in the form

M = P a1

1 P a2

2 · · ·P ak

k ,
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where P1, P2, . . . , Pk are monic irreducible polynomials over Fpn and a1, a2, . . . , ak,

k ∈ N [7]. For α ∈ R , define µΩ
α : Ω → C by

µΩ
α(M) =

k
∏

i=1

(

α

ai

)

(−1)ai , µΩ
α(1Ω) = 1, (8)

where
(

α

0

)

= 1,

(

α

n

)

=
α(α − 1) · · · (α − n + 1)

n!
(n ∈ N). (9)

This function is called the polynomial SHM function because µΩ
1 = µΩ , the

polynomial-Möbius function. Observe that µΩ
0 = I and µΩ

−1 = u . It is clear

by the definition of µΩ
α that µΩ

α is multiplicative for all real number α . It follows

that µΩ
α ∗ µΩ

β = µΩ
α+β for all real numbers α and β .

We first recall two propositions in [3]:

Proposition 3.1. [3] Let f ∈ A (Ω) be multiplicative. Then f is completely

multiplicative if and only if f−1 (M) = fµΩ (M) for all M ∈ Ω .

Proposition 3.2. [3] If f ∈ A (Ω) is multiplicative, then f is completely multi-

plicative if and only if f
(

P k
)

= f (P )
k

for all irreducible polynomials P ∈ Ω and

for all k ∈ N .

Now for the main results, we prove the following lemma.

Lemma 3.3. A multiplicative function f is completely multiplicative if and only

if f(g ∗ h) = fg ∗ fh for all g, h ∈ A(Ω) .

Proof. If f is completely multiplicative, then for all g, h ∈ A(Ω) and all M ∈ Ω,

we have

f(g ∗ h)(M) = f(M)

(Ω)
∑

D|M

g(D)h(M/D),

=

(Ω)
∑

D|M

f(D)g(D)f(M/D)h(M/D),

=

(Ω)
∑

D|M

fg(D)fh(M/D),

= (fg ∗ fh)(M).
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Conversely, assume that f(g ∗ h) = fg ∗ fh for all g, h ∈ A(Ω). Then the

equation holds when g = u and h = µΩ i.e.

IΩ = fIΩ = f(u ∗ µΩ) = fu ∗ fµΩ = f ∗ fµΩ.

This implies f−1 = fµΩ and the desired result follows by Proposition 3.1.

Our first main result reads:

Theorem 3.4. Let f ∈ A(Ω) be a multiplicative function and α a nonzero real

number. Then f is completely multiplicative if and only if (µΩ
αf)−1 = µΩ

−αf .

Proof. Let f ∈ A(Ω) be a multiplicative function and α ∈ R\{0} . If f is com-

pletely multiplicative, then

µΩ
αf ∗ µΩ

−αf = (µΩ
α ∗ µΩ

−α)f = µΩ
0 f = IΩ f = IΩ,

by Lemma 3.3 and so (µΩ
αf)−1 = µΩ

−αf .

Conversely, assume that (µΩ
αf)−1 = µΩ

−αf . By Proposition 3.2, it suffices to

show that f
(

P k
)

= f (P )
k

for all irreducible P ∈ Ω and for all k ∈ N . Since

this is trivial for k = 1, we consider k ≥ 2. We proceed by induction assuming

that f
(

P i
)

= f (P )
i

holds for i ∈ {1, 2, . . . , k − 1} . Rewriting hypothesis in an

equivalent form as

µΩ
αf ∗ µΩ

−αf = IΩ

and evaluating at P k , we get

0 = IΩ(P k) = (µΩ
αf ∗ µΩ

−αf)(P k),

=
∑

i+j=k

µΩ
−αf(P i)µΩ

αf(P j),

=
∑

i+j=k

(

−α

i

)

(−1)if(P i)

(

α

j

)

(−1)jf(P j),

= (−1)k
∑

i+j=k

(

−α

i

)(

α

j

)

f(P i)f(P j).

From (1 + z)α(1 + z)−α = 1, we infer that,

∑

i+j=k

(

−α

i

)(

α

j

)

= 0,
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which implies that

(

−α

k

)

+

(

α

k

)

= −

[

k−1
∑

i=1

(

−α

i

)(

α

k − i

)

]

. (10)

Using induction hypothesis, we get

0 =

[(

−α

k

)

+

(

α

k

)]

f(P k) +

[

k−1
∑

i=1

(

−α

i

)(

α

k − i

)

]

f(P )k

and so f
(

P k
)

= f (P )
k

follows from (10), α 6= 0 and k ≥ 2.

Our last main result reads:

Theorem 3.5. Let f be a multiplicative function and α ∈ R . Then

(i) If f is completely multiplicative then fα = µΩ
−αf .

(ii) For α /∈ {0, 1} , if fα = µΩ
−αf , then f is completely multiplicative

Proof. (i) If f is completely multiplicative, then by Lemma 3.3 and (5), we have

fr = f∗f∗· · ·∗f = (u∗u∗· · ·∗u)f = (µΩ
−1∗µ

Ω
−1∗· · ·∗µ

Ω
−1)f = µΩ

−rf (r ∈ N). (11)

Let M ∈ Ω be fixed. From (4), (7) and (2), we can prove that fα(M) is a

polynomial in α and by (8) and (9), (µΩ
−αf)(M) is also a polynomial in α . Using

(11), we have that fα(M) = (µΩ
−αf)(M) holds for infinitely many values of α . It

follows that fα(M) − (µΩ
−αf)(M) is the zero polynomial and so fα = µΩ

−αf for

all real α .

(ii) Let α ∈ R\{0, 1} . Since f is multiplicative, by Proposition 3.2, it suffices

to show that f
(

P k
)

= f (P )
k

for all irreducible polynomials P ∈ Ω and for all

k ∈ N . The case k = 1 being trivial. We proceed by induction assuming that

f
(

P i
)

= f (P )
i

holds for i ∈ {1, 2, . . . , k − 1} (k ≥ 2).

We pause to prove an auxilliary claim.

Claim.

fα(P k) = f(P )k
(

µΩ
−α(P k) − α

)

+ αf(P k). (12)
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Proof of Claim. Let r ∈ N . Then, using the induction hypothesis, we get

fr(P k) =
∑

i1+···+ir=k

f(P i1) · · · f(P ir ),

=
∑

i1+···+ir=k, all ij 6=k

f(P i1) · · · f(P ir ) + rf(P k),

= f(P )k
∑

i1+···+ir=k, all ij 6=k

1 + rf(P k),

= f(P )k

[(

r + k − 1

k

)

− r

]

+ rf(P k),

= f(P )k

[

(−1)k

(

−r

k

)

− r

]

+ rf(P k),

= f(P )k
(

µΩ
−r(P

k) − r
)

+ rf(P k). (13)

From the useful fact, mentioned in the preliminaries, we known that the expression

fα(P k) is a polynomial in α . By (8) and (9), the right hand side of (12) is a

polynomial in α . Using (13), we obtain fα(P k) = f(P )k
(

µΩ
−α(P k) − α

)

+αf(P k)

holds for all positive integer α . It follows that fα(P k) = f(P )k
(

µΩ
−α(P k) − α

)

+

αf(P k) holds for all real numbers α .

Returning to the hypothesis, using (12) and evaluating at P k , we get

µΩ
−α(P k)f(P k) = fα(P k) = f(P )k

(

µΩ
−α(P k) − α

)

+ αf(P k)

and so
(

µΩ
−α(P k) − α

)

f(P k) =
(

µΩ
−α(P k) − α

)

f(P )k.

Simplifying, we arrive at

[(

α + k − 1

k

)

− α

]

f(P k) =

[(

α + k − 1

k

)

− α

]

f(P )k.

Since α /∈ {0, 1} and k ≥ 2, then
(

α+k−1
k

)

− α 6= 0, and we have the result.
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Fibonacci Quart., 33(1995), 169–173.

[3] K. Khirathan and N.R. Kanasri, Characterizing completely multiplicative

arithmetic functions of polynomials by Rearick Logarithmic Operator, Col-

lections of the Full Papers of the 15th Annual Meeting in Mathematics, 2010.

[4] V. Laohakosol, N. Pabhapote and N. Wechwiriyakul, Characterizing

completely multiplicative functions by generalized Möbius functions,
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