Characterizing Completely Multiplicative Polynomial-Arithmetic Functions by Generalized Möbius Functions

Narakorn Rompurk Kanasri*

Received 18 June 2010
Revised 8 March 2011
Accepted 30 March 2011

Abstract

Let Ω denote the set of monic polynomials over a finite field and let $\mathcal{A}(\Omega)$ be the ring of arithmetic functions $f: \Omega \rightarrow \mathbb{C}$. We construct a generalized Möbius functions in $\mathcal{A}(\Omega)$ and use it to characterize completely multiplicative functions in $\mathcal{A}(\Omega)$.

Keywords: polynomial-arithmetic function, complete multiplicativity, generalized Möbius function

2000 Mathematics Subject Classification: 11A25

1 Introduction

In the classical case, Hsu [2], see also [9], [1], introduced the SHM (Souriau-HsuMöbius) function

$$
\mu_{\alpha}(n)=\prod_{p \mid n}\binom{\alpha}{\nu_{p}(n)}(-1)^{\nu_{p}(n)}
$$

where $\alpha \in \mathbb{R}$, and $n=\prod_{p \text { prime }} p^{\nu_{p}(n)}$ denotes the unique prime factorization of $n \in \mathbb{N}, \nu_{p}(n)$ being the largest exponent of the prime p that divides n. This function generalizes the usual Möbius function, μ, because $\mu_{1}=\mu$. Using the

[^0]generalized Möbius function, Laohakosol et al [4], gave two characterizations of completely multiplicative functions. Save a minor condition, they read $\left(\mu_{\alpha} f\right)^{-1}=$ $\mu_{-\alpha} f$ and $f^{\alpha}=\mu_{-\alpha} f$, where f^{α} is the $\alpha^{t h}$ power function.

By a polynomial-arithmetic function, [8], we mean a mapping f from the set, Ω, of all monic polynomials over a finite field $\mathbb{F}_{p^{n}}$, where p is a prime and $n \in \mathbb{N}$ [7], into the field of complex numbers \mathbb{C}. Let $(\mathcal{A}(\Omega),+, *)$ denote the set of all polynomial-arithmetic functions equipped with addition and Dirichlet convolution defined over Ω, respectively, by

$$
\begin{aligned}
& (f+g)(M)=f(M)+g(M) \\
& (f * g)(M)=\sum_{D \mid M}^{(\Omega)} f(D) g\left(\frac{M}{D}\right)
\end{aligned}
$$

for all $M \in \Omega$, where the summation is over all $D \in \Omega$ which are divisors of M. As in the case of classical arithmetic functions, it is easy to check that $(\mathcal{A}(\Omega),+, *)$ is an integral domain with identity $I_{\Omega}([8])$, defined by

$$
I_{\Omega}(M)= \begin{cases}1 & \text { if } \quad M=1_{\Omega} \\ 0 & \text { otherwise }\end{cases}
$$

where 1_{Ω} is the identity element in $\mathbb{F}_{p^{n}}$.
Throughout, the notation $\sum^{(\Omega)}$ signifies a summation taken over monic polynomials in Ω.

The polynomial-Möbius function is defined, [3], by

$$
\mu^{\Omega}(M)= \begin{cases}1 & \text { if } M=1_{\Omega} \\ 0 & \text { if } P^{2} \mid M, P \text { irreducible element of } \Omega \\ (-1)^{t} & \text { if } M=P_{1} P_{2} \cdots P_{t}, \text { a product of distinct irreducible } \\ & \text { elements of } \Omega\end{cases}
$$

A function $f \in \mathcal{A}(\Omega)$ is said to be multiplicative if

$$
\begin{equation*}
f(M N)=f(M) f(N) \tag{1}
\end{equation*}
$$

whenever $(M, N)=1_{\Omega}$ and f is said to be completely multiplicative if (1) holds for all pairs of polynomials M, N [8]. Further, $f\left(1_{\Omega}\right)=1$ if f is multiplicative. It is clear that μ^{Ω} is multiplicative.

The objective of this paper is to construct generalized polynomial-Möbius functions and establish some characterizations of completely multiplicative functions in $\mathcal{A}(\Omega)$ using these functions.

2 Preliminaries

We have shown in [3], that the set

$$
\mathcal{U}(\Omega):=\left\{f \in \mathcal{A}(\Omega): f\left(1_{\Omega}\right) \neq 0\right\}
$$

is the set of all units in $\mathcal{A}(\Omega)$. That is, for every $f \in \mathcal{U}(\Omega)$, there is $f^{-1} \in \mathcal{A}(\Omega)$, the inverse of f with respect to the Dirichlet convolution, such that $f * f^{-1}=I_{\Omega}$ and
$f^{-1}\left(1_{\Omega}\right)=\frac{1}{f\left(1_{\Omega}\right)}, f^{-1}(M)=\frac{-1}{f\left(1_{\Omega}\right)} \sum_{D \mid M, D \neq 1_{\Omega}}^{(\Omega)} f(D) g\left(\frac{M}{D}\right) \quad\left(M \in \Omega \backslash\left\{1_{\Omega}\right\}\right)$.
It is easy to see that $(\mathcal{U}(\Omega), *)$ is an abelian group with identity I_{Ω} and the set of multiplicative functions forms a subgroup of $\mathcal{U}(\Omega)$. Note that $u^{-1}=\mu^{\Omega}, \quad$ [8], where u is a unit function $(u(M)=1 \quad M \in \Omega)$.

An arithmetic function $a \in \mathcal{A}(\Omega)$ is completely additive if $a(M N)=a(M)+$ $a(N)$ for all $M, N \in \Omega[3]$. Note that if $a \in \mathcal{A}(\Omega)$ is completely additive, then $a\left(1_{\Omega}\right)=0$.

Let
$\mathcal{A}_{1}(\Omega)=\left\{f \in \mathcal{A}(\Omega): f\left(1_{\Omega}\right) \in \mathbb{R}\right\}$ and $\mathcal{P}(\Omega)=\left\{f \in \mathcal{A}(\Omega): f\left(1_{\Omega}\right)>0\right\} \subseteq \mathcal{U}(\Omega)$.
Definition 2.1. ([3]) Let $a \in \mathcal{A}(\Omega)$ be a completely additive arithmetic function for which $a(M) \neq 0$ for all $M \in \Omega \backslash\left\{1_{\Omega}\right\}$. The polynomial-logarithmic operator (associated with a) is the map $\log _{\Omega}: \mathcal{P}(\Omega) \rightarrow \mathcal{A}_{1}(\Omega)$, defined by

$$
\begin{align*}
\log _{\Omega} f\left(1_{\Omega}\right) & =\log f\left(1_{\Omega}\right), \\
\log _{\Omega} f(M) & =\frac{1}{a(M)} \sum_{D \mid M}^{(\Omega)} f(D) f^{-1}\left(\frac{M}{D}\right) a(D) \tag{2}
\end{align*}
$$

for all $M \in \Omega \backslash\left\{1_{\Omega}\right\}$ where the right-hand side of the first equation denotes the real logarithmic value.

In the classical case, this logarithmic operator was first introduced by Rearick ([5],[6]). We have shown in [3], that $\log _{\Omega}$ is a bijection of $\mathcal{P}(\Omega)$ onto $\mathcal{A}_{1}(\Omega)$ and

$$
\begin{equation*}
\log _{\Omega}(f * g)=\log _{\Omega} f+\log _{\Omega} g \quad(f, g \in \mathcal{A}(\Omega)) \tag{3}
\end{equation*}
$$

Therefore, it is possible to define a polynomial-exponential operator

$$
\operatorname{Exp}_{\Omega}: \mathcal{A}_{1}(\Omega) \rightarrow \mathcal{P}(\Omega)
$$

as $\operatorname{Exp}_{\Omega}=\left(\log _{\Omega}\right)^{-1}$. For $f \in \mathcal{P}(\Omega)$ and $\alpha \in \mathbb{R}$, the $\alpha^{\text {th }}$ polynomial-power function is defined as

$$
\begin{equation*}
f^{\alpha}=\operatorname{Exp}_{\Omega}\left(\alpha \log _{\Omega} f\right) \tag{4}
\end{equation*}
$$

Clearly, $f^{0}=I_{\Omega}$ and $f^{1}=f$. For $r \in \mathbb{N}$, using (3) and (4), we obtain

$$
\begin{align*}
f^{r} & =\operatorname{Exp}_{\Omega}\left(r \log _{\Omega} f\right) \\
& =\operatorname{Exp}_{\Omega}\left(\log _{\Omega} f+\cdots+\log _{\Omega} f\right) \\
& =\operatorname{Exp}_{\Omega}\left(\log _{\Omega}(f * \cdots * f)\right) \\
& =f * \cdots * f \quad(r \text { factors }) . \tag{5}
\end{align*}
$$

We can show similarly that

$$
f^{-r}=f^{-1} * f^{-1} * \cdots * f^{-1} \quad(r \text { factors })
$$

Let a be a completely additive arithmetic function for which $a(M) \neq 0$ for all $M \in \Omega \backslash\left\{1_{\Omega}\right\}$. It follows from (2) that

$$
\begin{equation*}
a \log _{\Omega} f=f^{-1} * f a \tag{6}
\end{equation*}
$$

If we replace f with $\operatorname{Exp}_{\Omega} f$ in (6), we obtain

$$
a E x p_{\Omega} f=\operatorname{Exp}_{\Omega} f * f a
$$

Therefore $\operatorname{Exp}_{\Omega} f$ is uniquely determined by the formulas

$$
\begin{align*}
& \operatorname{Exp}_{\Omega} f\left(1_{\Omega}\right)=\exp \left(f\left(1_{\Omega}\right)\right) \\
& \operatorname{Exp}_{\Omega} f(M)=\frac{1}{a(M)} \sum_{D \mid M}^{(\Omega)} \operatorname{Exp}_{\Omega} f(D) f\left(\frac{M}{D}\right) a\left(\frac{M}{D}\right) \tag{7}
\end{align*}
$$

for all $M \in \Omega \backslash\left\{1_{\Omega}\right\}$. From (4), (7) and (2), it is not difficult to prove that for fixed $M \in \Omega$, the expression $f^{\alpha}(M)=\operatorname{Exp}_{\Omega}\left(\alpha \log _{\Omega} f\right)(M)$ is a polynomial in α.

3 Main Results

It is well-known that, each nonconstant monic polynomial $M \in \Omega$ can be uniquely written in the form

$$
M=P_{1}^{a_{1}} P_{2}^{a_{2}} \cdots P_{k}^{a_{k}}
$$

where $P_{1}, P_{2}, \ldots, P_{k}$ are monic irreducible polynomials over $\mathbb{F}_{p^{n}}$ and $a_{1}, a_{2}, \ldots, a_{k}$, $k \in \mathbb{N}[7]$. For $\alpha \in \mathbb{R}$, define $\mu_{\alpha}^{\Omega}: \Omega \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
\mu_{\alpha}^{\Omega}(M)=\prod_{i=1}^{k}\binom{\alpha}{a_{i}}(-1)^{a_{i}}, \quad \mu_{\alpha}^{\Omega}\left(1_{\Omega}\right)=1 \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\binom{\alpha}{0}=1,\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!} \quad(n \in \mathbb{N}) \tag{9}
\end{equation*}
$$

This function is called the polynomial SHM function because $\mu_{1}^{\Omega}=\mu^{\Omega}$, the polynomial-Möbius function. Observe that $\mu_{0}^{\Omega}=I$ and $\mu_{-1}^{\Omega}=u$. It is clear by the definition of μ_{α}^{Ω} that μ_{α}^{Ω} is multiplicative for all real number α. It follows that $\mu_{\alpha}^{\Omega} * \mu_{\beta}^{\Omega}=\mu_{\alpha+\beta}^{\Omega}$ for all real numbers α and β.

We first recall two propositions in [3]:
Proposition 3.1. [3] Let $f \in \mathcal{A}(\Omega)$ be multiplicative. Then f is completely multiplicative if and only if $f^{-1}(M)=f \mu^{\Omega}(M)$ for all $M \in \Omega$.

Proposition 3.2. [3] If $f \in \mathcal{A}(\Omega)$ is multiplicative, then f is completely multiplicative if and only if $f\left(P^{k}\right)=f(P)^{k}$ for all irreducible polynomials $P \in \Omega$ and for all $k \in \mathbb{N}$.

Now for the main results, we prove the following lemma.
Lemma 3.3. A multiplicative function f is completely multiplicative if and only if $f(g * h)=f g * f h$ for all $g, h \in \mathcal{A}(\Omega)$.

Proof. If f is completely multiplicative, then for all $g, h \in \mathcal{A}(\Omega)$ and all $M \in \Omega$, we have

$$
\begin{aligned}
f(g * h)(M) & =f(M) \sum_{D \mid M}^{(\Omega)} g(D) h(M / D), \\
& =\sum_{D \mid M}^{(\Omega)} f(D) g(D) f(M / D) h(M / D), \\
& =\sum_{D \mid M}^{(\Omega)} f g(D) f h(M / D), \\
& =(f g * f h)(M) .
\end{aligned}
$$

Conversely, assume that $f(g * h)=f g * f h$ for all $g, h \in \mathcal{A}(\Omega)$. Then the equation holds when $g=u$ and $h=\mu^{\Omega}$ i.e.

$$
I_{\Omega}=f I_{\Omega}=f\left(u * \mu^{\Omega}\right)=f u * f \mu^{\Omega}=f * f \mu^{\Omega}
$$

This implies $f^{-1}=f \mu^{\Omega}$ and the desired result follows by Proposition 3.1.
Our first main result reads:
Theorem 3.4. Let $f \in \mathcal{A}(\Omega)$ be a multiplicative function and α a nonzero real number. Then f is completely multiplicative if and only if $\left(\mu_{\alpha}^{\Omega} f\right)^{-1}=\mu_{-\alpha}^{\Omega} f$.

Proof. Let $f \in \mathcal{A}(\Omega)$ be a multiplicative function and $\alpha \in \mathbb{R} \backslash\{0\}$. If f is completely multiplicative, then

$$
\mu_{\alpha}^{\Omega} f * \mu_{-\alpha}^{\Omega} f=\left(\mu_{\alpha}^{\Omega} * \mu_{-\alpha}^{\Omega}\right) f=\mu_{0}^{\Omega} f=I_{\Omega} f=I_{\Omega}
$$

by Lemma 3.3 and so $\left(\mu_{\alpha}^{\Omega} f\right)^{-1}=\mu_{-\alpha}^{\Omega} f$.
Conversely, assume that $\left(\mu_{\alpha}^{\Omega} f\right)^{-1}=\mu_{-\alpha}^{\Omega} f$. By Proposition 3.2, it suffices to show that $f\left(P^{k}\right)=f(P)^{k}$ for all irreducible $P \in \Omega$ and for all $k \in \mathbb{N}$. Since this is trivial for $k=1$, we consider $k \geq 2$. We proceed by induction assuming that $f\left(P^{i}\right)=f(P)^{i}$ holds for $i \in\{1,2, \ldots, k-1\}$. Rewriting hypothesis in an equivalent form as

$$
\mu_{\alpha}^{\Omega} f * \mu_{-\alpha}^{\Omega} f=I_{\Omega}
$$

and evaluating at P^{k}, we get

$$
\begin{aligned}
0 & =I_{\Omega}\left(P^{k}\right)=\left(\mu_{\alpha}^{\Omega} f * \mu_{-\alpha}^{\Omega} f\right)\left(P^{k}\right), \\
& =\sum_{i+j=k} \mu_{-\alpha}^{\Omega} f\left(P^{i}\right) \mu_{\alpha}^{\Omega} f\left(P^{j}\right), \\
& =\sum_{i+j=k}\binom{-\alpha}{i}(-1)^{i} f\left(P^{i}\right)\binom{\alpha}{j}(-1)^{j} f\left(P^{j}\right), \\
& =(-1)^{k} \sum_{i+j=k}\binom{-\alpha}{i}\binom{\alpha}{j} f\left(P^{i}\right) f\left(P^{j}\right) .
\end{aligned}
$$

From $(1+z)^{\alpha}(1+z)^{-\alpha}=1$, we infer that,

$$
\sum_{i+j=k}\binom{-\alpha}{i}\binom{\alpha}{j}=0
$$

which implies that

$$
\begin{equation*}
\binom{-\alpha}{k}+\binom{\alpha}{k}=-\left[\sum_{i=1}^{k-1}\binom{-\alpha}{i}\binom{\alpha}{k-i}\right] \tag{10}
\end{equation*}
$$

Using induction hypothesis, we get

$$
0=\left[\binom{-\alpha}{k}+\binom{\alpha}{k}\right] f\left(P^{k}\right)+\left[\sum_{i=1}^{k-1}\binom{-\alpha}{i}\binom{\alpha}{k-i}\right] f(P)^{k}
$$

and so $f\left(P^{k}\right)=f(P)^{k}$ follows from (10), $\alpha \neq 0$ and $k \geq 2$.

Our last main result reads:

Theorem 3.5. Let f be a multiplicative function and $\alpha \in \mathbb{R}$. Then
(i) If f is completely multiplicative then $f^{\alpha}=\mu_{-\alpha}^{\Omega} f$.
(ii) For $\alpha \notin\{0,1\}$, if $f^{\alpha}=\mu_{-\alpha}^{\Omega} f$, then f is completely multiplicative

Proof. (i) If f is completely multiplicative, then by Lemma 3.3 and (5), we have

$$
\begin{equation*}
f^{r}=f * f * \cdots * f=(u * u * \cdots * u) f=\left(\mu_{-1}^{\Omega} * \mu_{-1}^{\Omega} * \cdots * \mu_{-1}^{\Omega}\right) f=\mu_{-r}^{\Omega} f \quad(r \in \mathbb{N}) \tag{11}
\end{equation*}
$$

Let $M \in \Omega$ be fixed. From (4), (7) and (2), we can prove that $f^{\alpha}(M)$ is a polynomial in α and by (8) and (9), $\left(\mu_{-\alpha}^{\Omega} f\right)(M)$ is also a polynomial in α. Using (11), we have that $f^{\alpha}(M)=\left(\mu_{-\alpha}^{\Omega} f\right)(M)$ holds for infinitely many values of α. It follows that $f^{\alpha}(M)-\left(\mu_{-\alpha}^{\Omega} f\right)(M)$ is the zero polynomial and so $f^{\alpha}=\mu_{-\alpha}^{\Omega} f$ for all real α.
(ii) Let $\alpha \in \mathbb{R} \backslash\{0,1\}$. Since f is multiplicative, by Proposition 3.2, it suffices to show that $f\left(P^{k}\right)=f(P)^{k}$ for all irreducible polynomials $P \in \Omega$ and for all $k \in \mathbb{N}$. The case $k=1$ being trivial. We proceed by induction assuming that $f\left(P^{i}\right)=f(P)^{i}$ holds for $i \in\{1,2, \ldots, k-1\} \quad(k \geq 2)$.

We pause to prove an auxilliary claim.

Claim.

$$
\begin{equation*}
f^{\alpha}\left(P^{k}\right)=f(P)^{k}\left(\mu_{-\alpha}^{\Omega}\left(P^{k}\right)-\alpha\right)+\alpha f\left(P^{k}\right) \tag{12}
\end{equation*}
$$

Proof of Claim. Let $r \in \mathbb{N}$. Then, using the induction hypothesis, we get

$$
\begin{align*}
f^{r}\left(P^{k}\right) & =\sum_{i_{1}+\cdots+i_{r}=k} f\left(P^{i_{1}}\right) \cdots f\left(P^{i_{r}}\right) \\
& =\sum_{i_{1}+\cdots+i_{r}=k, \text { all }} f\left(P^{i_{j} \neq k}\right) \cdots f\left(P^{i_{r}}\right)+r f\left(P^{k}\right), \\
& =f(P)^{k} \sum^{i_{1}+\cdots+i_{r}=k, \text { all } i_{j} \neq k} 1+r f\left(P^{k}\right) \\
& =f(P)^{k}\left[\binom{r+k-1}{k}-r\right]+r f\left(P^{k}\right), \\
& =f(P)^{k}\left[(-1)^{k}\binom{-r}{k}-r\right]+r f\left(P^{k}\right) \\
& =f(P)^{k}\left(\mu_{-r}^{\Omega}\left(P^{k}\right)-r\right)+r f\left(P^{k}\right) \tag{13}
\end{align*}
$$

From the useful fact, mentioned in the preliminaries, we known that the expression $f^{\alpha}\left(P^{k}\right)$ is a polynomial in α. By (8) and (9), the right hand side of (12) is a polynomial in α. Using (13), we obtain $f^{\alpha}\left(P^{k}\right)=f(P)^{k}\left(\mu_{-\alpha}^{\Omega}\left(P^{k}\right)-\alpha\right)+\alpha f\left(P^{k}\right)$ holds for all positive integer α. It follows that $f^{\alpha}\left(P^{k}\right)=f(P)^{k}\left(\mu_{-\alpha}^{\Omega}\left(P^{k}\right)-\alpha\right)+$ $\alpha f\left(P^{k}\right)$ holds for all real numbers α.

Returning to the hypothesis, using (12) and evaluating at P^{k}, we get

$$
\mu_{-\alpha}^{\Omega}\left(P^{k}\right) f\left(P^{k}\right)=f^{\alpha}\left(P^{k}\right)=f(P)^{k}\left(\mu_{-\alpha}^{\Omega}\left(P^{k}\right)-\alpha\right)+\alpha f\left(P^{k}\right)
$$

and so

$$
\left(\mu_{-\alpha}^{\Omega}\left(P^{k}\right)-\alpha\right) f\left(P^{k}\right)=\left(\mu_{-\alpha}^{\Omega}\left(P^{k}\right)-\alpha\right) f(P)^{k}
$$

Simplifying, we arrive at

$$
\left[\binom{\alpha+k-1}{k}-\alpha\right] f\left(P^{k}\right)=\left[\binom{\alpha+k-1}{k}-\alpha\right] f(P)^{k}
$$

Since $\alpha \notin\{0,1\}$ and $k \geq 2$, then $\binom{\alpha+k-1}{k}-\alpha \neq 0$, and we have the result.

Acknowledgements: This research is supported by the Thailand Research Funds RTA 5180005, the Centre of Excellence in Mathematics, CHE, and the Faculty of Science, Khon Kaen University, Thailand.

References

[1] T.C. Brown, L.C. Hsu, J. Wang and P.J.S. Shiue, On a certain kind of generalized number theoretical Möbius function, Math. Sci., 25(2000), 72-77.
[2] L.C. Hsu, A difference-operational approach to the Möbius inversion formulas, Fibonacci Quart., 33(1995), 169-173.
[3] K. Khirathan and N.R. Kanasri, Characterizing completely multiplicative arithmetic functions of polynomials by Rearick Logarithmic Operator, Collections of the Full Papers of the 15th Annual Meeting in Mathematics, 2010.
[4] V. Laohakosol, N. Pabhapote and N. Wechwiriyakul, Characterizing completely multiplicative functions by generalized Möbius functions, Int. J. Math. Sci., 11(2002), 633-639.
[5] D. Rearick, Operators on algebras of arithmetic functions, Duke Math. J., 35(1968), 761-766.
[6] D. Rearick, The trigonometry of numbers, Duke Math. J., 35(1968), 767-776.
[7] M. Rosen, Number Theory in Function Fields, Springer, New York, 2002.
[8] R. Sivaramakrishnan, Classical Theory of Arithmetic Functions, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 126, Marcel Dekker, New York, 1989.
[9] Jean-Marie Souriau, Généralisation de certaines formules arithmétiques d'inversion. Applications, Revue Scientific (Rev. Rose Illus.), 82(1944), 204211.

Narakorn Rompurk Kanasri
Department of Mathematics, Khon Kaen University,
Khon Kaen 40002, Thailand
Email: rompurk@hotmail.com

[^0]: * The author is supported by the Faculty of Science, Khon Kaen University.

