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1 Introduction

Let ‘H be a separable complex Hilbert space. The algebra of all operators on H is
denoted by B(H) and the symbols Ran(A) and Ker(A) are used to denote the
range and kernel of an operator A acting on H respectively. Throughout the pa-
per, by an operator we mean a bounded linear transformation acting on a Hilbert
space. Recall that an operator A € B(H), where A* stands for the adjoint of A,
is said to be

hyponormal if AA* < A*A;

quasihyponormal if A*(AA*)A < A*(A*A)A equivalently (A*A)? < A*2A2;
posinormal if AA* < c2A* A for some ¢ > 0;

quasiposinormal if A*(AA*)A < 2A*(A*A)A equivalently (A*A)? < c2A*?A2
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for some ¢ > 0.

The hyponormal, posinormal, quasihyponormal, and quasiposinormal classes
of operators are discussed by many authors and we refer to [1,2,5,7,12,13] for more
details and the applications of these classes of operators. The following relations
with strict inclusion are well known.

hyponormal C quasihyponormal.

hyponormal C posinormal C quasiposinormal.

The quasihyponormal class is generalized to (p,k)-quasihyponormal class [6],
namely, A satisfying A**(AA*)PAF < A**(A*A)PA* and in [9] the quasiposi-
normal class is generalized to (p,k)-quasiposinormal class of operators, namely,
A satisfying A**(AA*)PAF < 2A*F(A* A)P AR | where k is a positive integer and
0 < p < 1. In [10], Patel has discussed some properties for a class of operators
A on a Hilbert space H satisfying (A*A)* < A*k A%k > 2, which is named as
(M,k) class. It is evident that for k = 2, the operators of class (M k) become the
class of quasihyponormal operators. The motive of this paper is twofold. First
we introduce Posi-(M,k) operators and present some properties along with certain
equivalent conditions for an operator to be Posi-(M,k). Strict inclusion of (M,k)
class of operators in Posi-(Mk) class is also shown. Next we focus (in sections 2
and 3) on deriving conditions for composition and weighted composition operators
on L?*(Q, A, 1) to be in Posi-(M,k) class.

2 Generalizations

We begin with the following definition:

Definition 2.1. An operator A € B(H) is said to be Posi-(Mk) if (A*A)* <
2A*R AR (k> 2), for some ¢ > 0.

The collection of all Posi-(M,k) operators is referred as Posi-(M,k) class. It is
interesting to note, similar to the fact that the (M,2) class of operators coincides to
the class of quasihyponormal operators, the Posi-(M,2) class of operators coincides
to the class of quasiposinormal operators. Consider the Hilbert space ¢? with
standard orthonormal basis {e,|n > 0}. We recall that a unilateral weighted
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shift A on ¢? with weight <an>n>0 is injective if and only if the weight sequence
<O‘”>n>o has no zero term. Let A be the unilateral weighted shift with weighted

sequence <an>n>0, where

ag=a1 = 0, as=2and «a, =1ifn>3.
Then A is of Posi-(M,2) class with (A4*A4)? < 4A4*2A2. Also,
<(A*A)262,62> = 16 and <(A*2A2)62,62> =4.

Hence A is not of (M,2) class. This justifies the strict inclusion of (M,2) class of
operators in Posi-(M,2)class.

For any positive integer k > 2, every operator of (M k) class is of Posi-(M,k)
class but the converse is not true. For, if we consider the unilateral weighted shift

A with weighted sequence <O‘”>n>o’ where

a, = 0ifn <k,
ap < apgq ifn >k

and «y is taken such that ay > agrp—1. Then Ay is of Posi-(M,k) class but not
of (M,k) class. Clearly A is not injective.

However, we note the following property, which is easy to prove:

An injective unilateral weighted shift with weight <o¢n>
(M,k) class if and only if

>0 belongs to Posi-

sup P
" [ant1onyoopyr—_1]

< o0. (2.1.1)

It can be easily seen that the condition (2.1.1) holds if a sequence <an>n>0 of

nonzero terms converges to a nonzero number but (2.1.1) may fail to hold even if
(an) tends to zero ( e.g., condition (2.1.1) does not hold for o, =

but holds for a, = +).

n

1
n(n—1)(n—2)--1

The following conclusion can be made by using [7, Remark page 4]:
For an injective unilateral weighted shift A with weight <an>n>0 , following are

equivalent

1. A belongs to Posi-(M,2) class.

[ovn |
|0‘n+1‘

2. sup < 0.
n

3. A is posinormal.
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If A ="U|A| is the polar decomposition of an operator A on a Hilbert space
H then A injective implies that |A| is injective and hence |A|™ is injective for

n

each natural number n. As a consequence (A*A)™ is injective for each natural

number n. Whereas injectiveness of A is obvious from the injectiveness of A*A.
Thus we have the following:

An operator A on a Hilbert space H is injective if and only if (A*A)F is
injective for each natural number k.

We use this fact to obtain the following result.

Theorem 2.2. If A € B(H) is of Posi-(M,k) class then Ker(AF) = Ker(A).

An immediate consequence of this theorem (which is also proved by an alternate

way in corollary 2.11) is the following:
Corollary 2.3. If A € B(H) is of Posi-(M,k) class then Ker(A D) = Ker(A?).

The next theorem presents some characterizations for an operator A acting on
a Hilbert space H to be of class Posi-(M k) for k > 2.

Theorem 2.4. For an operator A € B(H), the following are equivalent:
1. A is of Posi-(M,k) class.
2. There exists a positive operator P € B(H) satisfying
(A*A)F = A"k pAF.
3. There exists a positive operator P € B(H) satisfying
(A*A)* < Ak pAF,

4. There exists C € B(H) satisfying |A|¥ = A**C, where |A| = VA*A.
5. Ran(|A|*) C Ran(A**).
Proof. The proof follows using the ideas from [4, Theorem 1] given by Douglas. [

Corollary 2.5. If A € B(H) is invertible then A is of Posi-(M,k) class for each
positive integer k > 2.

Proof. In this case Ran(|A|*) = Ran(A**) = H. O
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Corollary 2.6. If A € B(H) is of Posi-(M,k) class and V € B(H) is an isometry
then VAV* is also of Posi-(M,k) class.

Proof. If P is a positive operator satisfying the condition (2) of the Theorem 2.5
for the operator A then V PV* is a positive operator satisfying the same condition
for the operator VAV*. O

Posi-(M,k) operators are not closed under translations and the adjoint of a
Posi-(M,k) operator may not be Posi-(M,k). It can be verified by the facts that U
and A = (U* —2I) are of Posi-(M k) class because U satisfies the condition (5) of
the Theorem 2.5 and A = (U* — 2I) is invertible, where U is the unilateral shift
operator on the Hilbert space (2. But A + 21 = U* is not of Posi-(M,k) class as

<(UU*)k61,el> =1 and <(UkU*k)el,el> =0

where e; =< 0,1,0,0,0,- - - >€ ¢?. Evidentally, the sum of two operators of
Posi-(M,k) class need not belongs to the same class. However, it is easy to verify
that if A € B(H) is of Posi-(M,k) class then «A is of Posi-(M,k) class, for each
aeC.

It is also seen that the product AB of two operators A and B of Posi-(M,k)
class need not be in the Posi-(M,k) class. For, consider the unilateral shift operator

A and a diagonal operator B with diagonal entries

1, if n=0,
Qp = O, lf n=1,
1, n>2.

Then A and B both are of Posi-(M,2) class. AB is unilateral shift with weights
Go=1,60=0 and 3, =1 for n > 2. Now

(((AB)*AB)%c,e0) =1 and (((AB)**(AB)?)eo, eo) = 0.

Hence AB does not belong to Posi-(M,2) class.
In the next result, we present a sufficient condition for the product AB in
Posi-(M,k) class.

Theorem 2.7. If A and B are of Posi-(M,k) class such that A commutes with
B and B* then AB is of Posi-(M,k) class.
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Proof. Suppose that
(A*A)k < C%A*kAk

and

for some ¢y, ¢y > 0. The positive operators (cfA**A* —(A*A)*) and (c3B**B* —
(B*B)*) commute, hence

(3A*k AR — (A*A)F) (3B**B* + (B*B)*) > 0 (2.4.1).
By the similar argument, we have
(AR AR 1 (A*A)F) (EB*B* — (B*B)) > 0 (2.4.2).

Using (2.4.1) and (2.4.2), we find that

(AB)*(AB))* = (4*4)*(B*B)"
S 62 (A*kAk) (B*kBk)
= *(AB)*(AB)"),
where ¢ = c¢yco. Hence AB is of Posi-(M,k) class. O

It is not known whether the product AB of two commuting operators A and

B of Posi-(M,k) class belongs to Posi-(M,k) class. However, we have the following.

Corollary 2.8. If A is of Posi-(M,k) class and B is a normal operator such that
A commutes with B then AB is of Posi-(M,k) class.

Proof. Proof follows immediately by applying Putnam-Fuglede Theorem [11]. O

Our next result needs the Holder-McCarthy Inequality, which states the fol-
lowing.
Let A be a positive operator on H. Then the following hold:

Lo: ( APz, z) < ( Az, 2)"||z[?0—P)  if0<p<1.

2.0 ( APz, z) > ( Asz, x>pHx||2(1’p) it p>1.

Theorem 2.9. If A is of Posi-(M,k) class then there exists ¢ > 0 such that
ol Az|PFD | AM ]| > || A%

forall x € H.
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Proof. Suppose that (A*A)* < cA** A% for some ¢ > 0. The required inequality

is trivially true if Az =0, so we may assume that Az % 0. Then

A z|? = (A AR)(Az), Ax)
> H(A*A)F(Az), Ax)
> 7 Axl| 720D (A% A)(Ax), Ax)"
= Az PO A% P,
Hence c|Az|?F=D||AF+1z||2 > ||A%2||?* for all 2 € H. O

The following result is immediate from Theorem 2.9.

Corollary 2.10. If A € B(H) is of Posi-(M,k) class then Ker(A®+D) = Ker(A?).

3 Composition Operators

Let (2, A, 1) be a o— finite measure space. A measurable transformation 7T :
Q — Q satisfying

w(T~Y(B)) =0 whenever u(B)=0 for Be€ A

is said to be a non-singular measurable transformation. If T' is non-singular, then

the measure pT'~! given by
(uT~Y(B) = w(T™Y(B)) for B € A,

is absolutely continuous with respect to the measure p and we denote it by writing
uT~! <« . Hence by the Radon-Nikodym theorem, there exists a non-negative
measurable function A such that

(1 (B) = [ hd .

B

for every B € A. The function h is called the Radon-Nikodym derivative of the
measure pT 1 with respect to the measure p. It is denoted by h = duT~'/dpu.
For k > 1, define T¥ =T oT o- (k times) -oT. Then the Radon-Nikodyn

derivative of uT~* with respect to p is denoted by hy. It is easy to check that
hiy=h-hoT'-hoT 2....hoT~ =1 We use the symbol E, which denotes
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the conditional expectation operator E(.[T~(A)) = E(f). We refer [3,8] as well
as the references included therein, to study the basic properties of expectation
operator.

Let L? = L*(Q, A, i) denote the space of all complex-valued measurable func-
tion for which fQ |f|?dy < co. A composition operator on L2, induced by a
non-singular measurable transformation 7', is denoted by C7 and is given by

Crf=foT foreach f € L%

Then for f € L? and for any positive integer k, C%f = foT* and C3¥f = hy-
E(f)oT™*, where hy = duT="/du.

Theorem 2.5, when combined with these properties of the composition operator
Cr, takes the following form.

Theorem 3.1. Let Cr € B(L?). Then the following are equivalent:
1. Cr is of Posi-(M,k) class.
2. There exists a constant ¢ > 0 such that
152 FIl < ellv/hw - £l
for each f € L?.
3. hE < chy for some ¢ > 0.
Corollary 3.2. For Cr € B(L?), following are equivalent:
1. Cr is quasiposinormal.
2. ||h- fll < cl|[Vha- fll, for each f € L? and for some constant ¢ > 0.
3. h?2 < c?hy for some ¢ > 0.
4. h < chy  for some ¢ >0, where hy = duT—2/duT=1.
Proof. Proof follows by setting £ = 2 in Theorem 3.1. O

The next theorem gives a characterization for the adjoint of a composition

operator to be of Posi-(M,k) class, which follows without any extra efforts.
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Theorem 3.3. Let Cr € B(L?). A necessary and sufficient condition for C3 to
be of Posi-(M,k) class is that, for each f € L?

((hoT)*-E(f), f) < (o TF - E(f), f)
for some constant ¢ > 0.

Corollary 3.4. Let Cp € B(L?). If T~1(A) = A then C% is Posi-(M,k) if and
only if for some ¢ >0, (hoT)* < c%hy o T*.

Corollary 3.5. Let Cr € B(L?). If T"Y(A) = A then C3 is quasiposinormal if
and only if for some constant ¢ >0, (hoT)? < c?hy o T?.

Example 3.6. Consider the composition operator Cr on L?(), where Q = R,
the set of all real numbers, p =Lebesgue measure, A = o—algebra of all Lebesgue

measurable subsets of real numbers and T : Q — € is given by
T(x)=xz+a

for each z € Q, a > 0 is a fixed real number. Then A = 1 and also for each
positive integer k > 2, hy = 1. Hence, Cp and C4 both are of Posi-(M,k) class
for each k£ > 2.

Example 3.7. Let Q = [0,1], u =Lebesgue measure and A be the o—algebra
of all Lebesgue measurable subsets of the interval [0,1]. Let T":  — Q be given
by
T(z) =z

for each z € Q. The Radon-Nikodym derivative hy, of uT~% with respect to p is
given by

hi(z) = k2" 1
for each o € Q. The composition operator Cr on L?(Q) induced by T is not of
Posi-(M,k) class for any k > 2.

Example 3.8. Let Q = R, the set of all real numbers, p =Lebesgue measure
and A be the o—algebra of all Lebesgue measurable subsets of real numbers. Let
T:Q — Q be given by
T(x) =2z

for each z € Q. Then T induces the composition operator Cr on L?(Q2). In
this case h = 1/2. For each positive integer k > 2, T* : Q + Q is given by
T(x) = 2z for each = € Q satisfies hy = 1/2%. Moreover T~!(A) = A so that
Cr and C% both are of Posi-(M,k) class for each k > 2.
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4 Weighted Composition Operators

Let W = W, 1) denote the weighted composition operator on L? given by
(f » u- foT), induced by a complex-valued mapping u on  and a mea-
surable transformation 7' :  +— Q. The adjoint W* of the weighted composition

operator W is given by
W*f=h-BE(u-f)oT™*

for each f € L?. In case v = 1 a.e. then W becomes the composition operator
Cr.
The following results can be achieved without any extra efforts.

Theorem 4.1. Let W € B(L?). Then W is of Posi-(M,k) class if and only if

there exists a constant ¢ > 0 such that

(h-Ew?) oT™HY* < Phy - E(u}) o T,

where up, =u - (uoT) - (uoT?)-- ~(uwoTH=D)Y and hy, = d“;;;k .

Corollary 4.2. Let W € B(L?). If T~'(A) = A then W is of Posi-(M,k) class
if and only if
(h-u?oT Nk < Phy - uloT ™k

for some ¢ > 0.
If we put k& = 2, we have the following:

Corollary 4.3. Let W € B(L?). If T"*(A) = A then W is quasiposinormal if
and only if
(h-u?oT 12 < Phy-usoT™?

for some ¢ > 0.

Theorem 4.4. Let W € B(L?). Then W* is of Posi-(M,k) class if and only if

there exists a constant ¢ > 0 satisfying
<u CEW?)* 1 (hoT)* ~E(uf),f> < 02<uk hg o TF - E(ugf), f>
for each f € L?.

Corollary 4.5. Let W € B(L?). If T~'(A) = A then W* is of Posi-(M,k) class
if and only if u?* - (ho T)* < c*u - hy o T*, for some ¢ > 0.
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Corollary 4.6. W* is quasiposinormal if and only if for some ¢ > 0,
ut - (hoT)? < c*u3-hyoT?.

Example 4.7. Let = R, the set of all real numbers, u =Lebesgue measure,
A = o—algebra of all Lebesgue measurable subsets of real numbers. Consider the

mappings T : Q — Q given by

and u : Q2 — § given by

for each x € Q, a,b > 0 are fixed real numbers. Then w and T induce the
weighted composition operator W on L2(£2). Also,

(h-u?oT ™ Hr = hy-u2oT k= p?k

and

. (hoT)* = ui -hyoTF = p?*

so that W and W* both are of Posi-(M k) class for each k > 2.
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