Volume 5(2013), 11-22

http://www.math.sc.chula.ac.th/cjm

On a Generalization of Quasiposinormal Operators

Gopal Datt

Received 21 May 2013 Revised 23 September 2013 Accepted 10 October 2013

Abstract: Paper describes some properties for the operators A on a Hilbert space \mathcal{H} satisfying $(A^*A)^k \leq c^2A^{*k}A^k$ for some c > 0, $k \geq 2$ and also presents some characterizations for the composition operators and the weighted composition operators on the Hilbert space L^2 to be of this type.

Keywords: hyponormal operator, posinormal operator, k-quasiposinormal operator and weighted composition operator

2010 Mathematics Subject Classification: 47B20, 47B33

1 Introduction

Let \mathcal{H} be a separable complex Hilbert space. The algebra of all operators on \mathcal{H} is denoted by $\mathfrak{B}(\mathcal{H})$ and the symbols Ran(A) and Ker(A) are used to denote the range and kernel of an operator A acting on \mathcal{H} respectively. Throughout the paper, by an operator we mean a bounded linear transformation acting on a Hilbert space. Recall that an operator $A \in \mathfrak{B}(\mathcal{H})$, where A^* stands for the adjoint of A, is said to be

hyponormal if $AA^* \leq A^*A$; quasihyponormal if $A^*(AA^*)A \leq A^*(A^*A)A$ equivalently $(A^*A)^2 \leq A^{*2}A^2$; posinormal if $AA^* \leq c^2A^*A$ for some c > 0; quasiposinormal if $A^*(AA^*)A \leq c^2A^*(A^*A)A$ equivalently $(A^*A)^2 \leq c^2A^{*2}A^2$ for some c > 0.

The hyponormal, posinormal, quasihyponormal, and quasiposinormal classes of operators are discussed by many authors and we refer to [1,2,5,7,12,13] for more details and the applications of these classes of operators. The following relations with strict inclusion are well known.

 $hyponormal \subset quasihyponormal.$

 $hyponormal \subset posinormal \subset quasiposinormal.$

The quasihyponormal class is generalized to (p,k)-quasihyponormal class [6], namely, A satisfying $A^{*k}(AA^*)^pA^k \leq A^{*k}(A^*A)^pA^k$ and in [9] the quasiposinormal class is generalized to (p,k)-quasiposinormal class of operators, namely, A satisfying $A^{*k}(AA^*)^pA^k \leq c^2A^{*k}(A^*A)^pA^k$, where k is a positive integer and 0 . In [10], Patel has discussed some properties for a class of operators <math>A on a Hilbert space \mathcal{H} satisfying $(A^*A)^k \leq A^{*k}A^k$, $k \geq 2$, which is named as (M,k) class. It is evident that for k=2, the operators of class (M,k) become the class of quasihyponormal operators. The motive of this paper is twofold. First we introduce Posi-(M,k) operators and present some properties along with certain equivalent conditions for an operator to be Posi-(M,k). Strict inclusion of (M,k) class of operators in Posi-(M,k) class is also shown. Next we focus (in sections 2 and 3) on deriving conditions for composition and weighted composition operators on $L^2(\Omega, \mathcal{A}, \mu)$ to be in Posi-(M,k) class.

2 Generalizations

We begin with the following definition:

Definition 2.1. An operator $A \in \mathfrak{B}(\mathcal{H})$ is said to be Posi-(M,k) if $(A^*A)^k \leq c^2 A^{*k} A^k$, $(k \geq 2)$, for some c > 0.

The collection of all Posi-(M,k) operators is referred as Posi-(M,k) class. It is interesting to note, similar to the fact that the (M,2) class of operators coincides to the class of quasihyponormal operators, the Posi-(M,2) class of operators coincides to the class of quasiposinormal operators. Consider the Hilbert space ℓ^2 with standard orthonormal basis $\{e_n|n\geq 0\}$. We recall that a unilateral weighted

shift A on ℓ^2 with weight $\langle \alpha_n \rangle_{n \geq 0}$ is injective if and only if the weight sequence $\langle \alpha_n \rangle_{n \geq 0}$ has no zero term. Let A be the unilateral weighted shift with weighted sequence $\langle \alpha_n \rangle_{n \geq 0}$, where

$$\alpha_0 = \alpha_1 = 0$$
, $\alpha_2 = 2$ and $\alpha_n = 1$ if $n \ge 3$.

Then A is of Posi-(M,2) class with $(A^*A)^2 \leq 4A^{*2}A^2$. Also,

$$\langle (A^*A)^2 e_2, e_2 \rangle = 16 \text{ and } \langle (A^{*2}A^2)e_2, e_2 \rangle = 4.$$

Hence A is not of (M,2) class. This justifies the strict inclusion of (M,2) class of operators in Posi-(M,2) class.

For any positive integer $k \geq 2$, every operator of (M,k) class is of Posi-(M,k) class but the converse is not true. For, if we consider the unilateral weighted shift A_k with weighted sequence $\langle \alpha_n \rangle_{n \geq 0}$, where

$$\alpha_n = 0 \text{ if } n < k,$$

 $\alpha_n \le \alpha_{n+1} \text{ if } n > k$

and α_k is taken such that $\alpha_k \geq \alpha_{2k-1}$. Then A_k is of Posi-(M,k) class but not of (M,k) class. Clearly A is not injective.

However, we note the following property, which is easy to prove:

An injective unilateral weighted shift with weight $\langle \alpha_n \rangle_{n \geq 0}$ belongs to Posi-(M,k) class if and only if

$$\sup_{n} \frac{|\alpha_n|^{k-1}}{|\alpha_{n+1}\alpha_{n+2}\cdots\alpha_{n+k-1}|} < \infty. \tag{2.1.1}$$

It can be easily seen that the condition (2.1.1) holds if a sequence $\langle \alpha_n \rangle_{n \geq 0}$ of nonzero terms converges to a nonzero number but (2.1.1) may fail to hold even if $\langle \alpha_n \rangle$ tends to zero (e.g., condition (2.1.1) does not hold for $\alpha_n = \frac{1}{n(n-1)(n-2)\cdots 1}$ but holds for $\alpha_n = \frac{1}{n}$).

The following conclusion can be made by using [7, Remark page 4]:

For an injective unilateral weighted shift A with weight $\langle \alpha_n \rangle_{n \geq 0}$, following are equivalent

- 1. A belongs to Posi-(M,2) class.
- 2. $\sup_{n} \frac{|\alpha_n|}{|\alpha_{n+1}|} < \infty.$
- 3. A is posinormal.

If A = U|A| is the polar decomposition of an operator A on a Hilbert space H then A injective implies that |A| is injective and hence $|A|^n$ is injective for each natural number n. As a consequence $(A^*A)^n$ is injective for each natural number n. Whereas injectiveness of A is obvious from the injectiveness of A^*A . Thus we have the following:

An operator A on a Hilbert space H is injective if and only if $(A^*A)^k$ is injective for each natural number k.

We use this fact to obtain the following result.

Theorem 2.2. If $A \in \mathfrak{B}(\mathcal{H})$ is of Posi-(M,k) class then $Ker(A^k) = Ker(A)$.

An immediate consequence of this theorem (which is also proved by an alternate way in corollary 2.11) is the following:

Corollary 2.3. If $A \in \mathfrak{B}(\mathcal{H})$ is of Posi-(M,k) class then $Ker(A^{(k+1)}) = Ker(A^2)$.

The next theorem presents some characterizations for an operator A acting on a Hilbert space H to be of class Posi-(M,k) for $k \geq 2$.

Theorem 2.4. For an operator $A \in \mathfrak{B}(\mathcal{H})$, the following are equivalent:

- 1. A is of Posi-(M,k) class.
- 2. There exists a positive operator $P \in \mathfrak{B}(\mathcal{H})$ satisfying

$$(A^*A)^k = A^{*k}PA^k.$$

3. There exists a positive operator $P \in \mathfrak{B}(\mathcal{H})$ satisfying

$$(A^*A)^k \le A^{*k}PA^k.$$

- 4. There exists $C \in \mathfrak{B}(\mathcal{H})$ satisfying $|A|^k = A^{*k}C$, where $|A| = \sqrt{A^*A}$.
- 5. $Ran(|A|^k) \subseteq Ran(A^{*k})$.

Proof. The proof follows using the ideas from [4, Theorem 1] given by Douglas. \Box

Corollary 2.5. If $A \in \mathfrak{B}(\mathcal{H})$ is invertible then A is of Posi-(M,k) class for each positive integer $k \geq 2$.

Proof. In this case
$$Ran(|A|^k) = Ran(A^{*k}) = \mathcal{H}$$
.

Corollary 2.6. If $A \in \mathfrak{B}(\mathcal{H})$ is of Posi-(M,k) class and $V \in \mathfrak{B}(\mathcal{H})$ is an isometry then VAV^* is also of Posi-(M,k) class.

Proof. If P is a positive operator satisfying the condition (2) of the Theorem 2.5 for the operator A then VPV^* is a positive operator satisfying the same condition for the operator VAV^* .

Posi-(M,k) operators are not closed under translations and the adjoint of a Posi-(M,k) operator may not be Posi-(M,k). It can be verified by the facts that U and $A = (U^* - 2I)$ are of Posi-(M,k) class because U satisfies the condition (5) of the Theorem 2.5 and $A = (U^* - 2I)$ is invertible, where U is the unilateral shift operator on the Hilbert space ℓ^2 . But $A + 2I = U^*$ is not of Posi-(M,k) class as

$$\langle (UU^*)^k e_1, e_1 \rangle = 1$$
 and $\langle (U^k U^{*k}) e_1, e_1 \rangle = 0$

where $e_1 = <0,1,0,0,0,\cdots > \in \ell^2$. Evidentally, the sum of two operators of Posi-(M,k) class need not belongs to the same class. However, it is easy to verify that if $A \in \mathfrak{B}(\mathcal{H})$ is of Posi-(M,k) class then αA is of Posi-(M,k) class, for each $\alpha \in \mathbb{C}$.

It is also seen that the product AB of two operators A and B of Posi-(M,k) class need not be in the Posi-(M,k) class. For, consider the unilateral shift operator A and a diagonal operator B with diagonal entries

$$\alpha_n = \begin{cases} 1, & \text{if } n = 0, \\ 0, & \text{if } n = 1, \\ 1, & n \ge 2. \end{cases}$$

Then A and B both are of Posi-(M,2) class. AB is unilateral shift with weights $\beta_0 = 1, \beta_1 = 0$ and $\beta_n = 1$ for $n \geq 2$. Now

$$\langle ((AB)^*AB)^2 e_0, e_0 \rangle = 1 \text{ and } \langle ((AB)^{*2}(AB)^2) e_0, e_0 \rangle = 0.$$

Hence AB does not belong to Posi-(M,2) class.

In the next result, we present a sufficient condition for the product AB in Posi-(M,k) class.

Theorem 2.7. If A and B are of Posi-(M,k) class such that A commutes with B and B^* then AB is of Posi-(M,k) class.

Proof. Suppose that

$$(A^*A)^k \le c_1^2 A^{*k} A^k$$

and

$$(B^*B)^k \le c_2^2 B^{*k} B^k$$

for some $c_1, c_2 > 0$. The positive operators $(c_1^2 A^{*k} A^k - (A^*A)^k)$ and $(c_2^2 B^{*k} B^k - (B^*B)^k)$ commute, hence

$$\left(c_1^2 A^{*k} A^k - (A^* A)^k\right) \left(c_2^2 B^{*k} B^k + (B^* B)^k\right) \ge 0 \tag{2.4.1}.$$

By the similar argument, we have

$$(c_1^2 A^{*k} A^k + (A^* A)^k) (c_2^2 B^{*k} B^k - (B^* B)^k) \ge 0$$
 (2.4.2).

Using (2.4.1) and (2.4.2), we find that

$$((AB)^*(AB))^k = (A^*A)^k (B^*B)^k$$

$$\leq c^2 (A^{*k}A^k) (B^{*k}B^k)$$

$$= c^2 (AB)^{*k} (AB)^k),$$

where $c = c_1 c_2$. Hence AB is of Posi-(M,k) class.

It is not known whether the product AB of two commuting operators A and B of Posi-(M,k) class belongs to Posi-(M,k) class. However, we have the following.

Corollary 2.8. If A is of Posi-(M,k) class and B is a normal operator such that A commutes with B then AB is of Posi-(M,k) class.

Proof. Proof follows immediately by applying Putnam-Fuglede Theorem [11]. \Box

Our next result needs the H\"older-McCarthy Inequality, which states the following.

Let A be a positive operator on \mathcal{H} . Then the following hold:

$$1. \ : \ \left< \ A^p x, \ x \right> \ \le \ \left< \ A x, \ x \right>^p \|x\|^{2(1-p)} \qquad \text{if } \ 0$$

2. :
$$\langle A^p x, x \rangle \ge \langle Ax, x \rangle^p ||x||^{2(1-p)}$$
 if $p > 1$.

Theorem 2.9. If A is of Posi-(M,k) class then there exists c > 0 such that

$$c||Ax||^{2(k-1)}||A^{k+1}x|| \ge ||A^2x||^{2k}$$

for all $x \in H$.

Proof. Suppose that $(A^*A)^k \leq cA^{*k}A^k$ for some c > 0. The required inequality is trivially true if Ax = 0, so we may assume that $Ax \neq 0$. Then

$$||A^{k+1}x||^{2} = \langle (A^{*k}A^{k})(Ax), Ax \rangle$$

$$\geq c^{-1}\langle (A^{*}A)^{k}(Ax), Ax \rangle$$

$$\geq c^{-1}||Ax||^{-2(k-1)}\langle (A^{*}A)(Ax), Ax \rangle^{k}$$

$$= c^{-1}||Ax||^{-2(k-1)}||A^{2}x||^{2k}.$$

Hence $c\|Ax\|^{2(k-1)}\|A^{k+1}x\|^2 \ge \|A^2x\|^{2k}$ for all $x \in H$.

The following result is immediate from Theorem 2.9.

Corollary 2.10. If $A \in \mathfrak{B}(\mathcal{H})$ is of Posi-(M,k) class then $Ker(A^{(k+1)}) = Ker(A^2)$.

3 Composition Operators

Let $(\Omega, \mathcal{A}, \mu)$ be a $\sigma-$ finite measure space. A measurable transformation $T:\Omega\to\Omega$ satisfying

$$\mu(T^{-1}(B)) = 0$$
 whenever $\mu(B) = 0$ for $B \in \mathcal{A}$

is said to be a non-singular measurable transformation. If T is non-singular, then the measure μT^{-1} given by

$$(\mu T^{-1})(B) = \mu(T^{-1}(B))$$
 for $B \in \mathcal{A}$,

is absolutely continuous with respect to the measure μ and we denote it by writing $\mu T^{-1} \ll \mu$. Hence by the Radon-Nikodym theorem, there exists a non-negative measurable function h such that

$$(\mu T^{-1})(B) = \int_B h d\mu \ ,$$

for every $B \in \mathcal{A}$. The function h is called the Radon-Nikodym derivative of the measure μT^{-1} with respect to the measure μ . It is denoted by $h = d\mu T^{-1}/d\mu$.

For $k \geq 1$, define $T^k = \underbrace{T \circ T \circ \cdot (k \ times) \quad \cdot \circ T}$. Then the Radon-Nikodyn derivative of μT^{-k} with respect to μ is denoted by h_k . It is easy to check that $h_k = h \cdot h \circ T^{-1} \cdot h \circ T^{-2} \cdot \cdots \cdot h \circ T^{-(k-1)}$. We use the symbol E, which denotes

the conditional expectation operator $E(.|T^{-1}(A)) = E(f)$. We refer [3,8] as well as the references included therein, to study the basic properties of expectation operator.

Let $L^2 = L^2(\Omega, \mathcal{A}, \mu)$ denote the space of all complex-valued measurable function for which $\int_{\Omega} |f|^2 d\mu < \infty$. A composition operator on L^2 , induced by a non-singular measurable transformation T, is denoted by C_T and is given by

$$C_T f = f \circ T$$
 for each $f \in L^2$.

Then for $f \in L^2$ and for any positive integer k, $C_T^k f = f \circ T^k$ and $C_T^{*k} f = h_k \cdot E(f) \circ T^{-k}$, where $h_k = d\mu T^{-k}/d\mu$.

Theorem 2.5, when combined with these properties of the composition operator C_T , takes the following form.

Theorem 3.1. Let $C_T \in \mathfrak{B}(L^2)$. Then the following are equivalent:

- 1. C_T is of Posi-(M,k) class.
- 2. There exists a constant c > 0 such that

$$||h^{k/2} \cdot f|| \le c||\sqrt{h_k} \cdot f||$$

for each $f \in L^2$.

3. $h^k \le c^2 h_k$, for some c > 0.

Corollary 3.2. For $C_T \in \mathfrak{B}(L^2)$, following are equivalent:

- 1. C_T is quasiposinormal.
- 2. $||h \cdot f|| \le c ||\sqrt{h_2} \cdot f||$, for each $f \in L^2$ and for some constant c > 0.
- 3. $h^2 \le c^2 h_2$ for some c > 0.
- 4. $h \le c^2 h_T$ for some c > 0, where $h_T = d\mu T^{-2}/d\mu T^{-1}$.

Proof. Proof follows by setting k = 2 in Theorem 3.1.

The next theorem gives a characterization for the adjoint of a composition operator to be of Posi-(M,k) class, which follows without any extra efforts.

Theorem 3.3. Let $C_T \in \mathfrak{B}(L^2)$. A necessary and sufficient condition for C_T^* to be of Posi-(M,k) class is that, for each $f \in L^2$

$$\langle (h \circ T)^k \cdot E(f), f \rangle \leq c^2 \langle h_k \circ T^k \cdot E(f), f \rangle$$

for some constant c > 0.

Corollary 3.4. Let $C_T \in \mathfrak{B}(L^2)$. If $T^{-1}(\mathcal{A}) = \mathcal{A}$ then C_T^* is Posi-(M,k) if and only if for some c > 0, $(h \circ T)^k \leq c^2 h_k \circ T^k$.

Corollary 3.5. Let $C_T \in \mathfrak{B}(L^2)$. If $T^{-1}(A) = A$ then C_T^* is quasiposinormal if and only if for some constant c > 0, $(h \circ T)^2 \leq c^2 h_2 \circ T^2$.

Example 3.6. Consider the composition operator C_T on $L^2(\Omega)$, where $\Omega = \mathbb{R}$, the set of all real numbers, $\mu = \text{Lebesgue}$ measure, $\mathcal{A} = \sigma - \text{algebra}$ of all Lebesgue measurable subsets of real numbers and $T : \Omega \mapsto \Omega$ is given by

$$T(x) = x + a$$

for each $x \in \Omega$, a > 0 is a fixed real number. Then $h \equiv 1$ and also for each positive integer $k \geq 2$, $h_k \equiv 1$. Hence, C_T and C_T^* both are of Posi-(M,k) class for each $k \geq 2$.

Example 3.7. Let $\Omega = [0,1]$, $\mu =$ Lebesgue measure and \mathcal{A} be the $\sigma-$ algebra of all Lebesgue measurable subsets of the interval [0,1]. Let $T: \Omega \mapsto \Omega$ be given by

$$T(x) = \sqrt{x}$$

for each $x \in \Omega$. The Radon-Nikodym derivative h_k of μT^{-k} with respect to μ is given by

$$h_k(x) = 2^k x^{2^k - 1}$$

for each $x \in \Omega$. The composition operator C_T on $L^2(\Omega)$ induced by T is not of Posi-(M,k) class for any $k \geq 2$.

Example 3.8. Let $\Omega = \mathbb{R}$, the set of all real numbers, $\mu =$ Lebesgue measure and \mathcal{A} be the $\sigma-$ algebra of all Lebesgue measurable subsets of real numbers. Let $T: \Omega \mapsto \Omega$ be given by

$$T(x) = 2x$$

for each $x \in \Omega$. Then T induces the composition operator C_T on $L^2(\Omega)$. In this case $h \equiv 1/2$. For each positive integer $k \geq 2$, $T^k : \Omega \mapsto \Omega$ is given by $T(x) = 2^k x$ for each $x \in \Omega$ satisfies $h_k \equiv 1/2^k$. Moreover $T^{-1}(A) = A$ so that C_T and C_T^* both are of Posi-(M,k) class for each $k \geq 2$.

4 Weighted Composition Operators

Let $W = W_{(u,T)}$ denote the weighted composition operator on L^2 given by $(f \mapsto u \cdot f \circ T)$, induced by a complex-valued mapping u on Ω and a measurable transformation $T : \Omega \mapsto \Omega$. The adjoint W^* of the weighted composition operator W is given by

$$W^*f = h \cdot E(u \cdot f) \circ T^{-1}$$

for each $f \in L^2$. In case u = 1 a.e. then W becomes the composition operator C_T .

The following results can be achieved without any extra efforts.

Theorem 4.1. Let $W \in \mathfrak{B}(L^2)$. Then W is of Posi-(M,k) class if and only if there exists a constant c > 0 such that

$$(h \cdot E(u^2) \circ T^{-1})^k \le c^2 h_k \cdot E(u_k^2) \circ T^{-k},$$

where $u_k = u \cdot (u \circ T) \cdot (u \circ T^2) \cdot \cdot \cdot \cdot \cdot (u \circ T^{(k-1)})$ and $h_k = \frac{d\mu T^{-k}}{du}$.

Corollary 4.2. Let $W \in \mathfrak{B}(L^2)$. If $T^{-1}(A) = A$ then W is of Posi-(M,k) class if and only if

$$(h \cdot u^2 \circ T^{-1})^k \le c^2 h_k \cdot u_k^2 \circ T^{-k}$$

for some c > 0.

If we put k = 2, we have the following:

Corollary 4.3. Let $W \in \mathfrak{B}(L^2)$. If $T^{-1}(A) = A$ then W is quasiposinormal if and only if

$$(h \cdot u^2 \circ T^{-1})^2 \le c^2 h_2 \cdot u_2^2 \circ T^{-2}$$

for some c > 0.

Theorem 4.4. Let $W \in \mathfrak{B}(L^2)$. Then W^* is of Posi-(M,k) class if and only if there exists a constant c > 0 satisfying

$$\langle u \cdot E(u^2)^{k-1} \cdot (h \circ T)^k \cdot E(uf), f \rangle \leq c^2 \langle u_k \cdot h_k \circ T^k \cdot E(u_k f), f \rangle$$

for each $f \in L^2$.

Corollary 4.5. Let $W \in \mathfrak{B}(L^2)$. If $T^{-1}(A) = A$ then W^* is of Posi-(M,k) class if and only if $u^{2k} \cdot (h \circ T)^k \leq c^2 u_k^2 \cdot h_k \circ T^k$, for some c > 0.

Corollary 4.6. W^* is quasiposinormal if and only if for some c > 0,

$$u^4 \cdot (h \circ T)^2 \le c^2 u_2^2 \cdot h_2 \circ T^2.$$

Example 4.7. Let $\Omega = \mathbb{R}$, the set of all real numbers, $\mu = \text{Lebesgue}$ measure, $\mathcal{A} = \sigma - \text{algebra}$ of all Lebesgue measurable subsets of real numbers. Consider the mappings $T: \Omega \mapsto \Omega$ given by

$$T(x) = x + a$$

and $u: \Omega \mapsto \Omega$ given by

$$u(x) = b$$

for each $x \in \Omega$, a, b > 0 are fixed real numbers. Then u and T induce the weighted composition operator W on $L^2(\Omega)$. Also,

$$(h \cdot u^2 \circ T^{-1})^k = h_k \cdot u_k^2 \circ T^{-k} = b^{2k}$$

and

$$u^{2k} \cdot (h \circ T)^k = u_k^2 \cdot h_k \circ T^k = b^{2k}$$

so that W and W^* both are of Posi-(M,k) class for each $k \geq 2$.

Acknowledgements: Insightful suggestions and the thorough review of the referee for the improvement of the paper are gratefully acknowledged.

References

- [1] J.T. Campbell and W.E. Hornor, Seminormal composition operators, *J. Operator Theory*, **29**(1993), 323–343.
- [2] J.T. Campbell and B.C. Gupta, On k-quasihyponormal operators, *Math. Japon.*, **23**(1978), 185–189.
- [3] G. Datt, On k-quasiposiponormal weighted composition operators, *Thai J. Maths.*, **11(1)**(2013), 131–142.
- [4] R.G. Douglas, On Majoriation, Factorization and Range Inclusion of Operators on Hilbert Spaces, *Proc. Amer. Math. Soc.*, **173**(1966), 413–415.

- [5] P.R. Halmos, A Hilbert space problem book, Princeton-Toronto-London, (1967).
- [6] I.H. Kim, On (p,k)- quasihyponormal operators, Math. Ineq. and Appl., 7(2004), 629–638.
- [7] C.S. Kubrusly and B.P. Duggal, On posinormal operators, *Advances in Math. Sc. and Appl.*, **17**(2007), 131–148.
- [8] A. Lambert, Localising sets for sigma-algebras and related point transformations, *Proc. Royal Soc. Edinburgh, Series A*, **118**(1991), 111–118.
- [9] M.Y. Lee and S.H. Lee, On (p,k)-Quasiposinormal Operators, Jr. Appl. Math and Computing, 19(1)(2005), 573–578.
- [10] S.M. Patel, On Classes of Non-Hyponormal Operators, *Math. Nachr.*, **73**(1975), 147–150.
- [11] C.R. Putnam, On Normal Operators in Hilbert space, *Amer. J. Math.*, **73**(1951), 357–362.
- [12] M. Radjabalipour, On majorization and normality of operators, *Proc. Amer. Math. Soc.*, **2**(1977), 105–110.
- [13] H.C. Rhaly, Posinormal Operators, Jr. Math. Soc. Japan, 46(1994), 587–605.

Gopal Datt

Department of Mathematics, PGDAV College University of Delhi, Delhi-110065 India

Email: gopal.d.sati@gmail.com