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Introduction

Lattice theory plays a vital role in information theory [3], information re-

trieval [2] and cryptanalysis. The concept of homomorphisms was introduced

in an Almost Distributive Lattice(ADL) by U.M. Swamy and G.C. Rao [9]. The

concept of O-ideals in ADLs is introduced by M. Sambasiva Rao and G.C. Rao

[8] and proved that each O-ideal is an intersection of all minimal prime ideals. In

general the image and the inverse image of an ideal of an ADL L under an onto

homomorphism are again ideals, but it is not true in the case of O-ideals. In this

paper, the concept of an O-homomorphism is introduced in ADLs and obtained

some properties of these homomorphisms. A sufficient condition is derived for a

homomorphism of an ADL to become an O-homomorphism. It is then proved
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that the image and the inverse image of an O-ideal under an O-homomorphism

are again O-ideals. Finally, we prove that the kernel of a homomorphism is an

O-ideal.

1 Preliminaries

In this section, we recall certain definitions and important results mostly from

[4], [5], [6], [7], [9] and [10] those will be required in the text of the paper.

Definition 1.1. [9] An Almost Distributive Lattice(ADL)with zero is an algebra

(L,∨,∧, 0) of type (2,2,0) satisfies the following properties:

1 (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)

2 x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

3 (x ∨ y) ∧ y = y

4 (x ∨ y) ∧ x = x

5 x ∨ (x ∧ y) = x

6 0 ∧ x = 0 for any x, y, z ∈ L

Let X be a non-empty set and x0 ∈ X a fixed element. Then for any x, y ∈ X ,

define x ∨ y = y for x = x0 , otherwise x ∨ y = x . Also x ∧ y = x0 for x = x0 ,

otherwise x∧y = y . Then clearly (X,∨,∧, x0) is an ADL with x0 as zero element.

This ADL is called a discrete ADL.

If (L,∨,∧, 0) is an ADL, for any a, b ∈ L , define a ≤ b if and only if a = a∧b

( or equivalently, a∨ b = b ), then ≤ is a partial ordering on L . Throughout this

paper, L stands for an ADL and by an ADL we mean the ADL (L,∨,∧, 0).

Theorem 1.2. [9] For any a, b, c ∈ L , we have the following.

1 a ∨ b = a ⇔ a ∧ b = b

2 a ∨ b = b ⇔ a ∧ b = a

3 a ∧ b = b ∧ a whenever a ≤ b

4 ∧ is associative in L

5 a ∧ b ∧ c = b ∧ a ∧ c

6 (a ∨ b) ∧ c = (b ∨ a) ∧ c

7 a ∧ b = 0 ⇔ b ∧ a = 0

8 a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

9 a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b, and a ∨ (b ∧ a) = a
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10 a ≤ a ∨ b and a ∧ b ≤ b

11 a ∧ a = a and a ∨ a = a

12 0 ∨ a = a and a ∧ 0 = 0 .

Definition 1.3. [9] A non-empty subset I of L is called an ideal (filter) of L if

a ∨ b ∈ I(a ∧ b ∈ I) and a ∧ x ∈ I(x ∨ a ∈ I) whenever a, b ∈ I and x ∈ L .

If I is an ideal of L and a, b ∈ L , then a ∧ b ∈ I ⇔ b ∧ a ∈ I . An ideal

I of an ADL L is called proper if I 6= L . The set I(L) of all ideals of L is a

complete distributive lattice with the least element {0} and the greatest element

L under set inclusion in which, for any I, J ∈ I(L), I ∩ J is the infemum of I, J

and the supremum is given by I ∨ J = { i ∨ j | i ∈ I, j ∈ J } . For any a ∈ L ,

(a] = { a ∧ x | x ∈ L } is the principal ideal generated by a . The set PI(L) of

all principal ideals of L is a sublattice of the ideal lattice I(L).

Similarly, the set F(L) of all filters of an ADL L is also a distributive lattice

in which, for any F,G of F(L), F ∩G is the infemum of F,G and the supremum

is F ∨ G = { f ∧ g | f ∈ F, g ∈ G } . For any a ∈ L, [a) = { x ∨ a | x ∈ L } is

the principal filter generated by a . The set PF(L) of all principal filters of L is

a sublattice of the filter lattice F(L).

For any subset A of an ADL L , the set A∗ = { x ∈ L | a∧x = 0 for all a ∈ A }

is an ideal of L . We write (a]∗ for {a}∗ and this is called an annulet of L [4].

Clearly (0]∗ = L and L∗ = (0].

Definition 1.4. [5] An ideal I of L is called an annihilator ideal if I∗∗ = I .

Lemma 1.5. [5] For any two ideals I , J of L , we have the following:

1) If I ⊆ J , then J∗ ⊆ I∗

2) I∗∗ ∩ J∗∗ = (I ∩ J)∗∗

3) (I ∨ J)∗ = I∗ ∩ J∗ .

Definition 1.6. [8] An ideal I of L is called an O-ideal if I = O(F ) =
⋃

x∈F

(x]∗

for some filter F of L .

Definition 1.7. [9] Let L and L′ be two ADLs with zero elements 0 and 0′

respectively. Then a mapping f : L → L′ is called a homomorphism if it satisfies

the following :

(1) f(a ∨ b) = f(a) ∨ f(b)
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(2) f(a ∧ b) = f(a) ∧ f(b)

(3) f(0) = 0′ .

The kernel of the homomorphism f is defined by Kerf = {x ∈ L | f(x) = 0′} .

Then clearly Ker f is an ideal in L .

2 O-homomorphisms

In this section, the concept of O-homomorphisms is introduced in an almost

distributive lattices (ADL) and a sufficient condition is derived for an ADL homo-

morphism to become an O-homomorphism. Throughout this section, L and L′

stand for two ADLs with zeroes 0 and 0′ respectively.

We begin this section with the following lemma which we need later.

Lemma 2.1. Let L and L′ be two ADLs. If f : L → L′ is a homomorphism,

then we have the following :

(1) For any filter F of L′ , f−1(F ) is a filter of L provided f−1(F ) 6= ∅ .

(2) If f is onto, then for any filter G of L , f(G) is a filter of L′ .

Proof. (1). Let F be a filter of L′ such that f−1(F ) 6= ∅ . Let a, b ∈ f−1(F ). Then

f(a), f(b) ∈ F . Since F is a filter of L′ , we get that f(a ∧ b) = f(a) ∧ f(b) ∈ F .

Hence a ∧ b ∈ f−1(F ). Again, let x ∈ f−1(F ) and r ∈ L . Then f(x) ∈ F . Now

f(r ∨ x) = f(r)∨ f(x) ∈ F . Hence r ∨ x ∈ f−1(F ). Thus f−1(F ) is a filter of L .

(2). Since G is non-empty, we get that f(G) is non-empty. Let f(a), f(b) ∈

f(G) where a, b ∈ G . Then f(a)∧f(b) = f(a∧b) ∈ f(G). Again, let f(a) ∈ f(G)

and x ∈ L′ . Since f is on-to, there exists y ∈ L such that f(y) = x . Now

x ∨ f(a) = f(y) ∨ f(a) = f(y ∨ a) ∈ f(G). Therefore f(G) is a filter of L′ .

Lemma 2.2. Let L and L′ be two ADLs. If f : L → L′ is a homomorphism,

then for any filter F of L , we have:

f
[

O(F )
]

⊆ O
[

f(F )
]

.

Proof. Let x ∈ f
[

O(F )
]

. Then x = f(a) for some a ∈ O(F ). Now a ∈ O(F )

implies that a ∧ s = 0 for some s ∈ F . Then x ∧ f(s) = f(a) ∧ f(s) = f(a ∧ s) =

f(0) = 0′ . Hence x ∈ O
[

f(F )
]

. Therefore f
[

O(F )
]

⊆ O
[

f(F )
]

.

In general, for any filter F of an ADL L , f
[

O(F )
]

= O
[

f(F )
]

is not true.

For consider the following example:
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Example 2.3. Let L = {0, a, b, c} be a discrete ADL. Define a mapping f : L → L

by f(x) = 0 for all x ∈ L . Then clearly f is a homomorphism on L . Now for

any filter F of L , O(F ) =
⋃

x∈F
(x]∗ = {0} . Hence f

[

O(F )
]

= f
(

{0}
)

= {0} .

Also f(F ) = {0} . Hence O
[

f(F )
]

= (0]∗ = L . Therefore f
[

O(F )
]

6= O
[

f(F )
]

.

We now introduce the concept of O-homomorphisms in the following.

Definition 2.4. Let L and L′ be two ADLs. Then a homomorphism f : L → L′

is called an O-homomorphism if

f
[

O(F )
]

= O
[

f(F )
]

for any filter F of L . An onto O-homomorphism is called an O-epimorphism.

Example 2.5. Let L1 = {0, b1, b2} and L2 = {0, a} be two discrete ADLs. Define

a mapping f : L1 −→ L2 by f(0) = 0, f(b1) = f(b2) = a . Then clearly f is a

homomorphism from L1 onto L2 . Clearly F = {b1, b2} is the only filter of L1 .

Now O(F ) = (b1]
∗
⋃

(b2]
∗ = {0} and f(F ) = {a} . Hence f

[

O(F )
]

= O
[

f(F )
]

.

Therefore f is an O-homomorphism of L1 .

If f is a ring epimorphism, then it is an isomorphism if and only if Ker f =

{0} . But it need not be true in the case of ADL-homomorphisms. It may be seen

from the above Example 2.5. Clearly f is onto and Ker f = {0} . But f is not

one-one. However, we have the following:

Theorem 2.6. Let L and L′ be two ADLs and f : L −→ L′ be an epimorphism.

If Ker f = {0} , then f is an O-homomorphism.

Proof. Assume that f is onto and Ker f = {0} . Let F be a filter of L . We have

always f
[

O(F )
]

⊆ O
[

f(F )
]

. Let x ∈ O
[

f(F )
]

⊆ L′ . Since f is onto, there exists

y ∈ L such that f(y) = x . Now

f(y) ∈ O
[

f(F )
]

⇒ f(y) ∧ f(s) = 0′ for some s ∈ F

⇒ f(y ∧ s) = 0′

⇒ y ∧ s ∈ Ker f = {0}

⇒ y ∈ O(F )

⇒ x = f(y) ∈ f
[

O(F )
]

.

Hence O
[

f(F )
]

⊆ f
[

O(F )
]

. Therefore f
[

O(F )
]

= O
[

f(F )
]

.
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Theorem 2.7. Let L and L′ be two ADLs and f : L −→ L′ an epimorphism such

that Ker f = {0} . Then O(F ) = O(G) if and only if O
[

f(F )
]

= O
[

f(G)
]

for

any two filters F,G of L .

Proof. Assume that f is an epimorphism and Ker f = {0} . Then by above

theorem, f is an O-homomorphism. Let F,G be two filters of L . Suppose O(F ) =

O(G). Then f
[

O(F )
]

= f
[

O(G)
]

. Hence O
[

f(F )
]

= O
[

f(G)
]

. Conversely,

assume that O
[

f(F )
]

= O
[

f(G)
]

. Now

t ∈ O(F ) ⇒ f(t) ∈ f
[

O(F )
]

⇒ f(t) ∈ O
[

f(F )
]

⇒ f(t) ∈ O
[

f(G)
]

⇒ f(t) ∧ f(s) = 0′ for some s ∈ G

⇒ f(t ∧ s) = 0′

⇒ t ∧ s ∈ Ker f = {0}

⇒ t ∧ s = 0 and s ∈ G

⇒ t ∈ O(G).

Therefore O(F ) ⊆ O(G). Similarly, we can have O(G) ⊆ O(F ). Therefore

O(F ) = O(G).

Theorem 2.8. Let L and L′ be two ADLs and f : L −→ L′ an O-homomor-

phism. Then f(K) is an O-ideal of L′ , for any O-ideal K of L .

Proof. Let K be an O-ideal of L . Then K = O(F ) for some filter F of L . Then

by Lemma 2.1, f(F ) is a filter of L′ . Since f is an O-homomorphism, we have

that f(K) = f
[

O(F )
]

= O
[

f(F )
]

. Therefore f(K) is an O-ideal of L .

We now define the contraction of an ideal in an ADL in the following:

Definition 2.9. Let L and L′ be two ADLs and f : L −→ L′ a homomorphism.

For any ideal J of L′ , f−1(J) is called the contraction of J with respect to f .

If f : L −→ L′ is a homomorphism of ADLs, then we know that the contraction

of every ideal of L′ is an ideal in L . But in the case of O-ideals it may not be

true. For consider the following example:
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Example 2.10. Let L = {0, a, b, c} and define ∨ and ∧ on L as follows:

∨ 0 a b c

0 0 a b c

a a a a a

b b b b b

c c a b c

∧ 0 a b c

0 0 0 0 0

a 0 a b c

b 0 a b c

c 0 c c c

Then clearly (L,∨,∧, 0) is an ADL with 0.

Let L′ = A × B where A = {0, a′} and B = {0′, b1, b2} be two discrete ADLs.

Then (L′,∨,∧, 0̄) is an ADL with respect to the point wise operations and 0̄ =

(0, 0′). Now define a mapping f : L −→ L′ as follows:

f(0) = 0̄, f(a) = (a′, b1), f(b) = (a′, b2) and f(c) = (a′, 0).

Then clearly f is a homomorphism from L into L′ . Now consider the ideal

J = {(0, 0′), (a′, 0′)} and the filter F = {(a′, b1), (a
′, b2), (0, b1), (0, b2)} of L′ .

Clearly J = O(F ). Hence J is an O-ideal of L′ . But f−1(J) = {0, c} is an ideal

of L which is not an O-ideal, because c ∈ f−1(J) and (c]∗ = (0].

However, in the following, we derive a sufficient condition for the contraction

of every O-ideal is again an O-ideal.

Theorem 2.11. Let L and L′ be two ADLs and f : L −→ L′ an epimorphism

such that Ker f = {0} . If every filter of L′ contracts to a filter of L , then every

O-ideal of L′ contracts to an O-ideal of L .

Proof. Let J be an O-ideal of L′ . Then J = O(G) for some filter G of L′ . By

hypothesis, f−1(G) is a filter of L . We now show that f−1
[

O(G)
]

= O
[

f−1(G)
]

.

Let x ∈ O
[

f−1(G)
]

. Then x ∧ s = 0 for some s ∈ f−1(G). Now

x ∧ s = 0 ⇒ f(x) ∧ f(s) = f(0) = 0′ and f(s) ∈ G

⇒ f(x) ∈ O(G)

⇒ x ∈ f−1
[

O(G)
]

.
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Hence O
[

f−1(G)
]

⊆ f−1
[

O(G)
]

. Conversely, let x ∈ f−1
[

O(G)
]

. Then we get

f(x) ∈ O(G) ⇒ f(x) ∧ f(t) = 0′ for some f(t) ∈ G

⇒ f(x ∧ t) = 0′

⇒ x ∧ t = Ker f = {0}

⇒ x ∧ t = 0 and t ∈ f−1(G)

⇒ x ∈ O
[

f−1(G)
]

.

Hence f−1
[

O(G)
]

⊆ O
[

f−1(G)
]

. Therefore f−1
[

O(G)
]

= O
[

f−1(G)
]

.

Theorem 2.12. Let f : L −→ L′ be a homomorphism such that each O-ideal of

L′ contracts to an O-ideal of L . If L′ has a dense element, then Ker f is an O

-ideal in L .

Proof. Since L′ has a dense element, {0′} is an O-ideal in L′ . Hence Ker f =

f−1
(

{0′}
)

is an O-ideal in L .
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