Chamchuri Journal of Mathematics

Volume 4(2012), 13-21

http://www.math.sc.chula.ac.th/cjm

O-homomorphisms of Almost Distributive Lattices

M. Sambasiva Rao* and G.C. Rao

Received 22 December 2011 Accepted 10 May 2012

Abstract: The concept of O-homomorphisms is introduced in an Almost Distributive Lattice (ADL). A sufficient condition for a homomorphism to become an O-homomorphism is derived. Finally, it is proved that the image and the inverse image of an O-ideal of an ADL under an O-homomorphism are again O-ideals.

Keywords: Almost Distributive Lattice(ADL), Filter, O-homomorphism, O-ideal, Contraction, Kernel of a homomorphism

2000 Mathematics Subject Classification: 06D99

Introduction

Lattice theory plays a vital role in information theory [3], information retrieval [2] and cryptanalysis. The concept of homomorphisms was introduced in an Almost Distributive Lattice(ADL) by U.M. Swamy and G.C. Rao [9]. The concept of O-ideals in ADLs is introduced by M. Sambasiva Rao and G.C. Rao [8] and proved that each O-ideal is an intersection of all minimal prime ideals. In general the image and the inverse image of an ideal of an ADL L under an onto homomorphism are again ideals, but it is not true in the case of O-ideals. In this paper, the concept of an O-homomorphism is introduced in ADLs and obtained some properties of these homomorphisms. A sufficient condition is derived for a homomorphism of an ADL to become an O-homomorphism. It is then proved

 $^{^{*}}$ Corresponding author

that the image and the inverse image of an O-ideal under an O-homomorphism are again O-ideals. Finally, we prove that the kernel of a homomorphism is an O-ideal.

1 Preliminaries

In this section, we recall certain definitions and important results mostly from [4], [5], [6], [7], [9] and [10] those will be required in the text of the paper.

Definition 1.1. [9] An Almost Distributive Lattice(ADL)with zero is an algebra $(L, \vee, \wedge, 0)$ of type (2,2,0) satisfies the following properties:

```
\begin{array}{ll} 1 & (x \vee y) \wedge z = (x \wedge z) \vee (y \wedge z) \\ 2 & x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) \\ 3 & (x \vee y) \wedge y = y \\ 4 & (x \vee y) \wedge x = x \\ 5 & x \vee (x \wedge y) = x \\ 6 & 0 \wedge x = 0 & \text{for any } x, y, z \in L \end{array}
```

Let X be a non-empty set and $x_0 \in X$ a fixed element. Then for any $x,y \in X$, define $x \vee y = y$ for $x = x_0$, otherwise $x \vee y = x$. Also $x \wedge y = x_0$ for $x = x_0$, otherwise $x \wedge y = y$. Then clearly (X, \vee, \wedge, x_0) is an ADL with x_0 as zero element. This ADL is called a discrete ADL.

If $(L, \vee, \wedge, 0)$ is an ADL, for any $a, b \in L$, define $a \leq b$ if and only if $a = a \wedge b$ (or equivalently, $a \vee b = b$), then \leq is a partial ordering on L. Throughout this paper, L stands for an ADL and by an ADL we mean the ADL $(L, \vee, \wedge, 0)$.

Theorem 1.2. [9] For any $a, b, c \in L$, we have the following.

```
1 a \lor b = a \Leftrightarrow a \land b = b

2 a \lor b = b \Leftrightarrow a \land b = a

3 a \land b = b \land a whenever a \le b

4 \land is associative in L

5 a \land b \land c = b \land a \land c

6 (a \lor b) \land c = (b \lor a) \land c

7 a \land b = 0 \Leftrightarrow b \land a = 0

8 a \lor (b \land c) = (a \lor b) \land (a \lor c)

9 a \land (a \lor b) = a, (a \land b) \lor b = b, and a \lor (b \land a) = a
```

```
10 a \le a \lor b and a \land b \le b

11 a \land a = a and a \lor a = a

12 0 \lor a = a and a \land 0 = 0.
```

Definition 1.3. [9] A non-empty subset I of L is called an ideal (filter) of L if $a \lor b \in I(a \land b \in I)$ and $a \land x \in I(x \lor a \in I)$ whenever $a, b \in I$ and $x \in L$.

If I is an ideal of L and $a,b \in L$, then $a \wedge b \in I \Leftrightarrow b \wedge a \in I$. An ideal I of an ADL L is called proper if $I \neq L$. The set $\mathcal{I}(L)$ of all ideals of L is a complete distributive lattice with the least element $\{0\}$ and the greatest element L under set inclusion in which, for any $I,J \in \mathcal{I}(L)$, $I \cap J$ is the infemum of I,J and the supremum is given by $I \vee J = \{i \vee j \mid i \in I, j \in J\}$. For any $a \in L$, $\{a\} = \{i \wedge i \mid i \in I\}$ is the principal ideal generated by i. The set i is a sublattice of the ideal lattice i is a sublattice of the ideal lattice i is a sublattice of the ideal lattice i in i

Similarly, the set $\mathcal{F}(L)$ of all filters of an ADL L is also a distributive lattice in which, for any F,G of $\mathcal{F}(L)$, $F\cap G$ is the infemum of F,G and the supremum is $F\vee G=\{\ f\wedge g\ |\ f\in F,\ g\in G\ \}$. For any $a\in L$, $[a)=\{\ x\vee a\ |\ x\in L\ \}$ is the principal filter generated by a. The set $\mathcal{PF}(L)$ of all principal filters of L is a sublattice of the filter lattice $\mathcal{F}(L)$.

For any subset A of an ADL L, the set $A^* = \{ x \in L \mid a \land x = 0 \text{ for all } a \in A \}$ is an ideal of L. We write $(a]^*$ for $\{a\}^*$ and this is called an annulet of L[4]. Clearly $(0]^* = L$ and $L^* = (0]$.

Definition 1.4. [5] An ideal I of L is called an annihilator ideal if $I^{**} = I$.

Lemma 1.5. [5] For any two ideals I, J of L, we have the following:

- 1) If $I \subseteq J$, then $J^* \subseteq I^*$
- 2) $I^{**} \cap J^{**} = (I \cap J)^{**}$
- 3) $(I \vee J)^* = I^* \cap J^*$.

Definition 1.6. [8] An ideal I of L is called an O-ideal if $I = O(F) = \bigcup_{x \in F} (x)^*$ for some filter F of L.

Definition 1.7. [9] Let L and L' be two ADLs with zero elements 0 and 0' respectively. Then a mapping $f: L \to L'$ is called a homomorphism if it satisfies the following:

(1)
$$f(a \lor b) = f(a) \lor f(b)$$

- (2) $f(a \wedge b) = f(a) \wedge f(b)$
- (3) f(0) = 0'.

The kernel of the homomorphism f is defined by $Kerf = \{x \in L \mid f(x) = 0'\}$. Then clearly Ker f is an ideal in L.

2 O-homomorphisms

In this section, the concept of O-homomorphisms is introduced in an almost distributive lattices (ADL) and a sufficient condition is derived for an ADL homomorphism to become an O-homomorphism. Throughout this section, L and L' stand for two ADLs with zeroes 0 and 0' respectively.

We begin this section with the following lemma which we need later.

Lemma 2.1. Let L and L' be two ADLs. If $f: L \to L'$ is a homomorphism, then we have the following:

- (1) For any filter F of L', $f^{-1}(F)$ is a filter of L provided $f^{-1}(F) \neq \emptyset$.
- (2) If f is onto, then for any filter G of L, f(G) is a filter of L'.

Proof. (1). Let F be a filter of L' such that $f^{-1}(F) \neq \emptyset$. Let $a, b \in f^{-1}(F)$. Then $f(a), f(b) \in F$. Since F is a filter of L', we get that $f(a \wedge b) = f(a) \wedge f(b) \in F$. Hence $a \wedge b \in f^{-1}(F)$. Again, let $x \in f^{-1}(F)$ and $r \in L$. Then $f(x) \in F$. Now $f(r \vee x) = f(r) \vee f(x) \in F$. Hence $r \vee x \in f^{-1}(F)$. Thus $f^{-1}(F)$ is a filter of L. (2). Since G is non-empty, we get that f(G) is non-empty. Let $f(a), f(b) \in f(G)$ where $a, b \in G$. Then $f(a) \wedge f(b) = f(a \wedge b) \in f(G)$. Again, let $f(a) \in f(G)$ and $x \in L'$. Since f is on-to, there exists $g \in L$ such that $f(g) = g(g) \vee f(g) = g(g) \vee f(g) = g(g) \vee f(g)$. Therefore f(G) is a filter of L'. \square

Lemma 2.2. Let L and L' be two ADLs. If $f: L \to L'$ is a homomorphism, then for any filter F of L, we have:

$$f[O(F)] \subseteq O[f(F)]$$
.

Proof. Let $x \in f[O(F)]$. Then x = f(a) for some $a \in O(F)$. Now $a \in O(F)$ implies that $a \wedge s = 0$ for some $s \in F$. Then $x \wedge f(s) = f(a) \wedge f(s) = f(a \wedge s) = f(0) = 0'$. Hence $x \in O[f(F)]$. Therefore $f[O(F)] \subseteq O[f(F)]$.

In general, for any filter F of an ADL L, f[O(F)] = O[f(F)] is not true. For consider the following example:

Example 2.3. Let $L = \{0, a, b, c\}$ be a discrete ADL. Define a mapping $f: L \to L$ by f(x) = 0 for all $x \in L$. Then clearly f is a homomorphism on L. Now for any filter F of L, $O(F) = \bigcup_{x \in F} (x]^* = \{0\}$. Hence $f[O(F)] = f(\{0\}) = \{0\}$. Also $f(F) = \{0\}$. Hence $O[f(F)] = (0]^* = L$. Therefore $f[O(F)] \neq O[f(F)]$.

We now introduce the concept of O-homomorphisms in the following.

Definition 2.4. Let L and L' be two ADLs. Then a homomorphism $f: L \to L'$ is called an O-homomorphism if

$$f[O(F)] = O[f(F)]$$

for any filter F of L. An onto O-homomorphism is called an O-epimorphism.

Example 2.5. Let $L_1 = \{0, b_1, b_2\}$ and $L_2 = \{0, a\}$ be two discrete ADLs. Define a mapping $f: L_1 \longrightarrow L_2$ by $f(0) = 0, f(b_1) = f(b_2) = a$. Then clearly f is a homomorphism from L_1 onto L_2 . Clearly $F = \{b_1, b_2\}$ is the only filter of L_1 . Now $O(F) = (b_1]^* \bigcup (b_2]^* = \{0\}$ and $f(F) = \{a\}$. Hence f[O(F)] = O[f(F)]. Therefore f is an O-homomorphism of L_1 .

If f is a ring epimorphism, then it is an isomorphism if and only if $Ker\ f = \{0\}$. But it need not be true in the case of ADL-homomorphisms. It may be seen from the above Example 2.5. Clearly f is onto and $Ker\ f = \{0\}$. But f is not one-one. However, we have the following:

Theorem 2.6. Let L and L' be two ADLs and $f: L \longrightarrow L'$ be an epimorphism. If $Ker \ f = \{0\}$, then f is an O-homomorphism.

Proof. Assume that f is onto and $Ker\ f = \{0\}$. Let F be a filter of L. We have always $f[O(F)] \subseteq O[f(F)]$. Let $x \in O[f(F)] \subseteq L'$. Since f is onto, there exists $y \in L$ such that f(y) = x. Now

$$f(y) \in O[f(F)] \implies f(y) \land f(s) = 0' \text{ for some } s \in F$$

$$\Rightarrow f(y \land s) = 0'$$

$$\Rightarrow y \land s \in Ker \ f = \{0\}$$

$$\Rightarrow y \in O(F)$$

$$\Rightarrow x = f(y) \in f[O(F)].$$

Hence $O[f(F)] \subseteq f[O(F)]$. Therefore f[O(F)] = O[f(F)].

Theorem 2.7. Let L and L' be two ADLs and $f: L \longrightarrow L'$ an epimorphism such that Ker $f = \{0\}$. Then O(F) = O(G) if and only if O[f(F)] = O[f(G)] for any two filters F, G of L.

Proof. Assume that f is an epimorphism and Ker $f = \{0\}$. Then by above theorem, f is an O-homomorphism. Let F, G be two filters of L. Suppose O(F) = O(G). Then f[O(F)] = f[O(G)]. Hence O[f(F)] = O[f(G)]. Conversely, assume that O[f(F)] = O[f(G)]. Now

$$\begin{split} t \in O(F) & \Rightarrow & f(t) \in f\big[O(F)\big] \\ & \Rightarrow & f(t) \in O\big[f(F)\big] \\ & \Rightarrow & f(t) \in O\big[f(G)\big] \\ & \Rightarrow & f(t) \land f(s) = 0' \quad \text{ for some } s \in G \\ & \Rightarrow & f(t \land s) = 0' \\ & \Rightarrow & t \land s \in Ker \ f = \{0\} \\ & \Rightarrow & t \land s = 0 \ \text{and} \ s \in G \\ & \Rightarrow & t \in O(G). \end{split}$$

Therefore $O(F) \subseteq O(G)$. Similarly, we can have $O(G) \subseteq O(F)$. Therefore O(F) = O(G).

Theorem 2.8. Let L and L' be two ADLs and $f: L \longrightarrow L'$ an O-homomorphism. Then f(K) is an O-ideal of L', for any O-ideal K of L.

Proof. Let K be an O-ideal of L. Then K = O(F) for some filter F of L. Then by Lemma 2.1, f(F) is a filter of L'. Since f is an O-homomorphism, we have that f(K) = f[O(F)] = O[f(F)]. Therefore f(K) is an O-ideal of L.

We now define the contraction of an ideal in an ADL in the following:

Definition 2.9. Let L and L' be two ADLs and $f: L \longrightarrow L'$ a homomorphism. For any ideal J of L', $f^{-1}(J)$ is called the contraction of J with respect to f.

If $f: L \longrightarrow L'$ is a homomorphism of ADLs, then we know that the contraction of every ideal of L' is an ideal in L. But in the case of O-ideals it may not be true. For consider the following example:

Example 2.10. Let $L = \{0, a, b, c\}$ and define \vee and \wedge on L as follows:

Then clearly $(L, \vee, \wedge, 0)$ is an ADL with 0.

Let $L' = A \times B$ where $A = \{0, a'\}$ and $B = \{0', b_1, b_2\}$ be two discrete ADLs. Then $(L', \vee, \wedge, \bar{0})$ is an ADL with respect to the point wise operations and $\bar{0} = (0, 0')$. Now define a mapping $f : L \longrightarrow L'$ as follows:

$$f(0) = \bar{0}, f(a) = (a', b_1), f(b) = (a', b_2)$$
 and $f(c) = (a', 0)$.

Then clearly f is a homomorphism from L into L'. Now consider the ideal $J = \{(0,0'),(a',0')\}$ and the filter $F = \{(a',b_1),(a',b_2),(0,b_1),(0,b_2)\}$ of L'. Clearly J = O(F). Hence J is an O-ideal of L'. But $f^{-1}(J) = \{0,c\}$ is an ideal of L which is not an O-ideal, because $c \in f^{-1}(J)$ and $(c)^* = \{0\}$.

However, in the following, we derive a sufficient condition for the contraction of every O-ideal is again an O-ideal.

Theorem 2.11. Let L and L' be two ADLs and $f: L \longrightarrow L'$ an epimorphism such that $Ker \ f = \{0\}$. If every filter of L' contracts to a filter of L, then every O-ideal of L' contracts to an O-ideal of L.

Proof. Let J be an O-ideal of L'. Then J=O(G) for some filter G of L'. By hypothesis, $f^{-1}(G)$ is a filter of L. We now show that $f^{-1}\big[O(G)\big]=O\big[f^{-1}(G)\big]$. Let $x\in O\big[f^{-1}(G)\big]$. Then $x\wedge s=0$ for some $s\in f^{-1}(G)$. Now

$$x \wedge s = 0 \implies f(x) \wedge f(s) = f(0) = 0' \text{ and } f(s) \in G$$

 $\Rightarrow f(x) \in O(G)$
 $\Rightarrow x \in f^{-1}[O(G)].$

Hence $O\big[f^{-1}(G)\big]\subseteq f^{-1}\big[O(G)\big]$. Conversely, let $x\in f^{-1}\big[O(G)\big]$. Then we get

$$f(x) \in O(G) \implies f(x) \land f(t) = 0' \text{ for some } f(t) \in G$$

$$\Rightarrow f(x \land t) = 0'$$

$$\Rightarrow x \land t = Ker \ f = \{0\}$$

$$\Rightarrow x \land t = 0 \text{ and } t \in f^{-1}(G)$$

$$\Rightarrow x \in O[f^{-1}(G)].$$

Hence
$$f^{-1}[O(G)] \subseteq O[f^{-1}(G)]$$
. Therefore $f^{-1}[O(G)] = O[f^{-1}(G)]$.

Theorem 2.12. Let $f: L \longrightarrow L'$ be a homomorphism such that each O-ideal of L' contracts to an O-ideal of L. If L' has a dense element, then $Ker\ f$ is an O-ideal in L.

Proof. Since L' has a dense element, $\{0'\}$ is an O-ideal in L'. Hence $Ker\ f = f^{-1}(\{0'\})$ is an O-ideal in L.

References

- [1] R. Balbes and P. Dwinger, *Distributive Lattices*, University of Missouri Press, Columbia, United States, 1974.
- [2] A.J. Bell, The co-information lattice, 4th Int. Symposium on Independent Component Analysis and Blind Signal separation, Japan, 2003, 921–926.
- [3] K.H. Knuth, Valuations on Lattices and their Applications to Information Theory, 2006 IEEE International Conference on Fuzzy Systems, Canada, July 16-21, 2006, 217–224.
- [4] G.C. Rao and S. Ravikumar, Minimal Prime ideals in Almost Distributive Lattices, Int. J. Contemp. Math. Sci., 4(2009), 475–484.
- [5] G.C. Rao and M. Sambasiva Rao, Annihilator Ideals in Almost Distributive Lattices, Int. Math. Forum, 4(2009), 733-746.
- [6] G.C. Rao and M. Sambasiva Rao, Annulets in Almost Distributive Lattices, European J. Pure and Applied Math., 2(2009), 58–72.
- [7] G.C. Rao and M. Sambasiva Rao, α-Ideals in Almost Distributive Lattices, Int. J. Contemp. Math. Sci., 4(2009), 457–466.

- [8] M. Sambasiva Rao and G.C. Rao, O-ideals in Almost Distributive Lattices, *Chamchuri J. Math.*, **3**(2011), 13–24.
- [9] U.M. Swamy and G.C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. (Series A), 31(1981), 77–91.
- [10] U.M. Swamy, G.C. Rao and G.N. Rao, Stone Almost Distributive Lattices, Southeast Asian Bull. Math., 27(2003), 513–526.
- [11] U.M. Swamy, G.C. Rao and G.N. Rao, Dense Elements in Almost Distributive Lattices, *Southeast Asian Bull. Math.*, **27**(2004), 1081–1088.

M. Sambasiva Rao
Department of Mathematics
MVGR College of Engineering
Chintalavalasa, Vizianagaram
Andhra Pradesh, INDIA-535005

Email: mssraomaths35@rediffmail.com

G.C. Rao
Department of Mathematics
Andhra University
Visakhapatnam, INDIA-530003
Email: gcraomaths@yahoo.co.in