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1 Introduction

Motivated by the theory of n -normed linear space [8, 9, 11, 13, 15] and fuzzy normed

linear space [1, 2, 3, 4, 5, 6, 7, 10, 12, 14] the notions of fuzzy n -normed linear space

[16] and intuitionistic fuzzy n -normed linear space [17] have been developed. In

[19,20] I -topological spaces and I -bitopological spaces generated by fuzzy norm

have been discussed.

In this paper we define intuitionistic fuzzy quasi pseudo n -norm and study the

I -topology and I -bitopology generated by this new norm. A characterization of

I -topological spaces and I -bitopological spaces are also established.
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2 Preliminaries

In this section we recall some useful definitions and results.

Definition 2.1. [18] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous

t-norm if ∗ satisfies the following conditions:

(i) ∗ is commutative and associative

(ii) ∗ is continuous

(iii) a ∗ 1 = a, for all a ∈ [0, 1]

(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d and a, b, c, d ∈ [0, 1] = I.

Definition 2.2. [18] A binary operation ¦ : [0, 1] × [0, 1] → [0, 1] is a continuous

t-co-norm if ¦satisfies the following conditions:

(i) ¦ is commutative and associative

(ii) ¦ is continuous

(iii) a ¦ 0 = a, for all a ∈ [0, 1]

(iv) a ¦ b ≤ c ¦ d whenever a ≤ c and b ≤ d and a, b, c, d ∈ [0, 1].

Remark 2.3. [20] The algebraic operations on I can be extended pointwise to

the set IX of all maps from X → I . i.e., If µ1, µ2 ∈ IX then (µ1 ∗ µ2)(x) =

µ1(x) ∗ µ2(x) for all x ∈ X .

Definition 2.4. [20] Let X be a non-empty set. A subset = of IX is called an

I -topology on X if = satisfies the following conditions:

(i) 1X , 1φ ∈ =

(ii) µ1, µ2 ∈ = implies µ1 ∗ µ2 ∈ =

(iii) {µi| i ∈ index set} ⊆ = implies ∨µi ∈ = .

Example 2.5. [20] Let X = {a, b} and ∗ be defined by r∗s = min{r, s} . Consider

µ1 ∈ IX defined by µ1(x) =







1

2
if x = a

0 if x = b
.

Then = = {1X , 1φ, µ1} is an I -topology on X . In this example if ∗ is a product

norm then = = {1X , 1φ, µ1} is not an I -topology on X since µ1 ∗ µ1 is not an

element in = .

Definition 2.6. [11] Let n ∈ N (natural numbers) and X be a real linear space

of dimension greater than or equal to n . A real valued function ||•, . . . , •|| on

X × · · · × X
︸ ︷︷ ︸

n

= Xn satisfying the following four properties:



I -Bitopological Spaces Generated by Intuitionistic Fuzzy n -Norms 17

1. ||x1, x2, . . . , xn|| = 0 if and only if x1, x2, . . . , xn are linearly dependent

2. ||x1, x2, . . . , xn|| is invariant under any permutation of x1, x2, . . . , xn

3. ||x1, x2, . . . , kxn|| = |k| ||x1, x2, ..., xn|| , for any k ∈ R (set of real numbers)

4. ||x1, x2, . . . , xn−1, y + z|| ≤ ||x1, x2, . . . , xn−1, y|| + ||x1, x2, . . . , xn−1, z||

is called an n-norm on X and the pair (X, ||•, . . . , •||) is called an n-normed

linear space.

Definition 2.7. [17] An intuitionistic fuzzy n-normed linear space or in short

i-f-n -NLS is an object of the form

A = {(X,N(x1, x2, . . . , xn, t),M(x1, x2, . . . , xn, t))/(x1, x2, . . . , xn) ∈ Xn}

where X is a linear space over a field F , ∗ is a continuous t-norm, ¦ is a continuous

t-co-norm and N,M are fuzzy sets on Xn × (0,∞); N denotes the degree of

membership and M denotes the degree of non-membership of (x1, x2, . . . , xn, t) ∈

Xn × (0,∞) satisfying the following conditions:

(1) N(x1, x2, . . . , xn, t) + M(x1, x2, . . . , xn, t) ≤ 1

(2) N(x1, x2, . . . , xn, t) > 0

(3) N(x1, x2, . . . , xn, t) = 1 if and only if x1, x2, . . . , xn are linearly dependent

(4) N(x1, x2, . . . , xn, t) is invariant under any permutation of x1, x2, . . . , xn

(5) N(x1, x2, . . . , cxn, t) = N(x1, x2, . . . , xn, t
|c| ) if c 6= 0,c ∈ F

(6) N(x1, x2, . . . , xn, s) ∗ N(x1, x2, . . . , x
′
n, t) ≤ N(x1, x2, . . . , xn + x′

n, s + t)

(7) N(x1, x2, . . . , xn, t) : (0,∞) → [0, 1] is continuous in t

(8) M(x1, x2, . . . , xn, t) > 0

(9) M(x1, x2, . . . , xn, t) = 0 if and only if x1, x2, . . . , xn are linearly dependent

(10) M(x1, x2, . . . , xn, t) is invariant under any permutation of x1, x2, . . . , xn

(11) M(x1, x2, . . . , cxn, t) = M(x1, x2, . . . , xn, t
|c| ), if c 6= 0, c ∈ F

(12) M(x1, x2, . . . , xn, s) ¦ M(x1, x2, . . . , x
′
n, t) ≥ M(x1, x2, . . . , xn + x′

n, s + t)
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(13) M(x1, x2, . . . , xn, t) : (0,∞) → [0, 1] is continuous in t .

Remark 2.8. For convenience we denote the intuitionistic fuzzy n -normed linear

space by A = (X,N,M, ∗, ¦).

Example 2.9. Let (X, ||•, . . . , •||) be an n -normed linear space, where X = R .

Define a ∗ b = min{a, b} and a ¦ b = max{a, b} , for all a, b ∈ [0, 1],

N(x1, x2, . . . , xn, t) = e−||x1,x2,...,xn||/t,

M(x1, x2, . . . , xn, t) = 1 − e−||x1,x2,...,xn||/t.

Then A = {(X,N(x1, x2, . . . , xn, t),M(x1, x2, . . . , xn, t))/(x1, x2, . . . , xn) ∈ Xn}

is an i-f-n -NLS.

3 I -topological and I -bitopological spaces

Definition 3.1. Let A be an i-f-n -NLS and let α ∈ (0, 1], ε > 0 and x ∈ A .

The fuzzy set Nα(x, ε) in A is defined as

Nα(x, ε)(y) =







α if N(x − y, ε) > 1 − α and M(x − y, ε) < α

0 otherwise

for y ∈ A is called the α-open sphere in an i-f-n-NLS with center at x .

Definition 3.2. Let A be an i-f-n -NLS. A fuzzy set µ ∈ IX is said to be open if

µ(x) > 0 implies there exists ε > 0 and α ∈ (0, 1] such that Nα(x, ε) ⊆ µ .

Theorem 3.3. Let A be an i-f-n-NLS. Then =N,M = {µ ∈ IX : µ is open} is

an I -topology on A .

Proof. (i) Clearly, 1X , 1φ ∈ =N,M .

(ii) Proof of µ1, µ2 ∈ =N,M implies µ1 ∗ µ2 ∈ =N,M .

µ1, µ2 ∈ =N,M ⇒ µ1, µ2 ∈ IX and µ1, µ2 are open. µ1, µ2 ∈ IX ⇒ µ1 ∗ µ2 ∈ IX

(by definition of ∗). µ1 is open. Therefore µ1(x) > 0 ⇒ ∃ ε1 > 0 and α ∈ (0, 1]

such that Nα(x, ε1) ⊆ µ1 . µ2 is open. Therefore µ2(x) > 0 ⇒ ∃ ε2 > 0 and

α ∈ (0, 1] such that Nα(x, ε2) ⊆ µ2 . Let ε = min(ε1, ε2). Therefore Nα(x, ε) ⊆ µ1

and Nα(x, ε) ⊆ µ2 ⇒ Nα(x, ε) ⊆ µ1 ∗ µ2 (by condition (iv) in definition of ∗)

⇒ µ1 ∗ µ2 is open. µ1 ∗ µ2 ∈ IX and µ1 ∗ µ2 is open ⇒ µ1 ∗ µ2 ∈ =N,M .
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(iii) Let {µi} be any collection of members of =N,M . Proof of
⋃

i∈I

µi ∈ =N,M .

If (
⋃

i∈I

µi)(x) > 0,∃ an i0 , such that µi0(x) > 0. So ∃ ε > 0 and α ∈ (0, 1] such

that Nα(x, ε) ⊆ µi0 ⊆
⋃

i∈I

µi . Hence
⋃

i∈I

µi ∈ =N,M .

Remark 3.4. =N,M is called an I -topology on A generated by the intuitionistic

fuzzy n-norms N,M and (A,=N,M ) is called as an I -topological space.

Definition 3.5. Let (A,=N1,M1
) and (B,=N2,M2

) be two I -topological spaces.

A mapping f→ : (A,=N1,M1
) → (B,=N2,M2

) is called I -continuous if f←(v) ∈

=N1,M1
for all v ∈ =N2,M2

.

Theorem 3.6. Let (A,=N1,M1
) , (B,=N2,M2

) ,(C,=N3,M3
) be three I -topological

spaces and f→ : (A,=N1,M1
) → (B,=N2,M2

) , g→ : (B,=N2,M2
) → (C,=N3,M3

) be

two I -continuous mappings. Then g→ ◦ f→ is I -continuous.

Proof. f→ : (A,=N1,M1
) → (B,=N2,M2

) is I -continuous implies f←(v) ∈ =N1,M1

∀ v ∈ =N2,M2
. g→ : (B,=N2,M2

) → (C,=N3,M3
) is I -continuous implies g←(w) ∈

=N2,M2
∀ w ∈ =N3,M3

. Now

(g ◦ f)←(w) = f←(g←(w))

= f←(v) ∈ =N1,M1
, ∀ w ∈ =N3,M3

which implies g→ ◦ f→ is I -continuous.

Definition 3.7. Let =N1,M1
,=N2,M2

be two I -topologies on A . Then (A,=N1,M1
,

=N2,M2
) is called an I -bitopological space.

Example 3.8. Let X = {a, b} . X × · · · × X
︸ ︷︷ ︸

n

= {x1, . . . , xn}, xi is either a or b .

We define ||x1, x2, . . . , xn|| = (
n∑

i=1

| xi|
2)

1

2 .

(i) ||x1, x2, . . . , xn|| = 0 ⇔ (
n∑

i=1

| xi|
2)

1

2 = 0

⇔
n∑

i=1

| xi|
2 = 0

⇔ xi = 0, ∀ i = 1, 2, . . . , n

⇔ x1, x2, . . . , xn are linearly dependent.

(ii) Clearly, ||x1, x2, . . . , xn|| is invariant under any permutation of x1, x2, . . . , xn .
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(iii) ||x1, x2, . . . , α xn|| = (| x1|
2 + | x2|

2 + · · · + | α xn|
2)

1

2

= (| x1|
2 + | x2|

2 + · · · + | α| 2|xn|
2)

1

2

= | α| ||x1, x2, . . . , xn|| if and only if α = 1.

(iv) ||x1, x2, . . . , xn−1, y|| + ||x1, x2, . . . , xn−1, z||

= (| x1|
2 + | x2|

2 + · · · + | xn−1|
2 + | y| 2)

1

2

+(| x1|
2 + | x2|

2 + · · · + | xn−1|
2 + | z| 2)

1

2

≥ (| x1|
2 + | x2|

2 + · · · + | xn−1|
2 + | y + z| 2)

1

2

≥ ||x1, x2, . . . , xn−1, y + z||

Hence (X, ||x1, x2, ..., xn|| ) is a n -normed linear space. Let ∗, ¦ be defined by

r ∗ s = min{r, s} , r ¦ s = max{r, s} . Consider µ1, µ2 ∈ IX defined by

µ1(x) =







1

2
if x = a

0 if x = b
and µ2(x) =







1

2
if x = a

1

2
if x = b

.

Let =N1,M1
= {1X , 1φ, µ1} and =N2,M2

= {1X , 1φ, µ2} . Then (A,=N1,M1
,=N2,M2

)

is an I -bitopological space.

Definition 3.9. Let (A,=N1,M1
,=N2,M2

) and (B,=N3,M3
,=N4,M4

) be two I -

bitopological spaces. Then f→ : (A,=N1,M1
,=N2,M2

) → (B,=N3,M3
,=N4,M4

) is I -

bicontinuous if f←(u) ∈ =N1,M1
∀ u ∈ =N3,M3

and f←(v) ∈ =N2,M2
∀ v ∈ =N4,M4

.

Definition 3.10. An I -topological space (A,=N,M ) is called a T0 -space if for

every pair of distinct points x, y ∈ A , there exists µ ∈ =N,M such that µ(x) 6=

µ(y).

Example 3.11. Let X = {a, b} and ∗, ¦ be defined by r ∗ s = min{r, s} ,

r ¦ s = max{r, s} . Consider µ1 ∈ IX defined by

µ1(x) =







1

2
if x = a

0 if x = b
. Then =N,M = {1X , 1φ, µ1} is a I -topology on A .

(A,=N,M ) is a T0 -space, whereas (A,=N2,M2
) given in Example 3.8 is not a

T0 -space.

Definition 3.12. An I -topological space (A,=N,M ) is called a T1 -space if for

any two distinct points x, y ∈ A , there exists µ1, µ2 ∈ =N,M such that µ1(x) > 0,

µ1(y) = 0 and µ2(x) = 0, µ2(y) > 0.

Example 3.13. Let X = {a, b} and ∗, ¦ be defined by r ∗ s = min{r, s} ,

r ¦ s = max{r, s} . Consider µ1, µ2 ∈ IX defined by
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µ1(x) =







1

2
if x = a

0 if x = b
and µ2(x) =







0 if x = a

1

2
if x = b

.

Then =N,M = {1X , 1φ, µ1, µ2} is a I -topology on A and (A,=N,M ) is a T1 -space.

The topological space given in Example 3.11 is not a T1 -space. It is clear that

every T1 -space is a T0 -space but not the converse.

Definition 3.14. An I -topological space (A,=N,M ) is called a T2 -space if for

any two distinct points x, y ∈ A , there exists µ1, µ2 ∈ =N,M such that µ1(x) > 0,

µ2(y) > 0 and µ1 ∗ µ2 = 1φ , µ1 ¦ µ2 = 1X .

Example 3.15. Let X = {a, b} and ∗, ¦ be defined by r ∗ s = max{0, r + s− 1} ,

r ¦ s = min{1, 2 − r − s} . Consider µ1, µ2 ∈ IX defined by

µ1(x) =







1

2
if x = a

0 if x = b
and µ2(x) =







0 if x = a

1

2
if x = b

.

Then =N,M = {1X , 1φ, µ1, µ2} is a I -topology on A . The I -topological space

(A,=N,M ) is a T2 -space.

Definition 3.16. An I -bitopological space (A,=N1,M1
,=N2,M2

) is said to be

pairwise Hausdorff if for any two distinct points x, y ∈ A , there exists a =N1,M1

open set µ1 and a =N2,M2
open set µ2 such that µ1(x) > 0, µ2(y) > 0 and

µ1 ∗ µ2 = 1φ , µ1 ¦ µ2 = 1X and there exists a =N1,M1
open set µ3 and a =N2,M2

open set µ4 such that µ3(y) > 0, µ4(x) > 0 and µ3 ∗ µ4 = 1φ , µ3 ¦ µ4 = 1X .

Example 3.17. Let X = {a, b} and ∗, ¦ be defined by r ∗ s = max{0, r + s− 1} ,

r ¦ s = min{1, 2 − r − s} . Consider µ1, µ2, µ3 ∈ IX defined by

µ1(x) =







1

2
if x = a

0 if x = b
, µ2(x) =







0 if x = a

1

2
if x = b

and

µ3(x) =







1

2
if x = a

1

2
if x = b

.

Then =N1,M1
= {1X , 1φ, µ1, µ3} , =N2,M2

= {1X , 1φ, µ2, µ3} are I -topologies

on A . The I -bitopological space (A,=N1,M1
,=N2,M2

) is a pairwise Hausdorff

space.
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Definition 3.18. An I -bitopological space (A,=N1,M1
,=N2,M2

) is said to be

pairwise weakly Hausdorff if for any two distinct points x, y ∈ A , there exists a

=N1,M1
open set µ1 and a =N2,M2

open set µ2 such that µ1(x) > 0, µ2(y) > 0

and µ1∗µ2 = 1φ , µ1¦µ2 = 1X or there exists a =N1,M1
open set µ3 and a =N2,M2

open set µ4 such that µ3(y) > 0, µ4(x) > 0 and µ3 ∗ µ4 = 1φ , µ3 ¦ µ4 = 1X .

Example 3.19. Let X = {a, b} and ∗, ¦ be defined by r ∗ s = max{0, r + s− 1} ,

r ¦ s = min{1, 2 − r − s} . Consider µ1, µ2 ∈ IX defined by

µ1(x) =







1

2
if x = a

0 if x = b
and µ2(x) =







1

2
if x = a

1

2
if x = b

.

Then =N1,M1
= {1X , 1φ, µ1} , =N2,M2

= {1X , 1φ, µ2} are I -topologies on A . The

I -bitopological space (A,=N1,M1
,=N2,M2

) is a pairwise weakly Hausdorff space.

Theorem 3.20. Assume that α 6= 0, β 6= 0 implies α∗β 6= 0 . If an I -bitopological

space (A,=N1,M1
,=N2,M2

) is pairwise weakly Hausdorff, then =N1,M1
and =N2,M2

are T0 -topologies.

Proof. Let x, y ∈ A with x 6= y . Since (A,=N1,M1
,=N2,M2

) is pairwise weakly

Hausdorff, there exists µ1 ∈ =N1,M1
and µ2 ∈ =N2,M2

such that µ1(x) > 0,

µ2(y) > 0 and µ1 ∗ µ2 = 1φ , µ1 ¦ µ2 = 1X . Since µ1(x) > 0 and µ2(y) > 0,

µ1(y) = 0 and µ2(x) = 0. Hence µ1(x) > 0, µ1(y) = 0 and µ2(x) = 0, µ2(y) > 0.

That is =N1,M1
and =N2,M2

are T0 -topologies.

Theorem 3.21. Assume that α 6= 0, β 6= 0 implies α∗β 6= 0 . If an I -bitopological

space (A,=N1,M1
,=N2,M2

) is pairwise Hausdorff, then =N1,M1
and =N2,M2

are

T1 -topologies.

Proof. Let x, y ∈ A with x 6= y . Since (A,=N1,M1
,=N2,M2

) is pairwise Hausdorff,

∃ µ1 ∈ =N1,M1
and µ2 ∈ =N2,M2

such that µ1(x) > 0, µ2(y) > 0 and µ1∗µ2 = 1φ ,

µ1 ¦ µ2 = 1X . Also there exists µ3 ∈ =N1,M1
and µ4 ∈ =N2,M2

such that

µ3(y) > 0, µ4(x) > 0 and µ3 ∗ µ4 = 1φ , µ3 ¦ µ4 = 1X . Hence µ1, µ3 ∈ =N1,M1

with µ1(x) > 0, µ1(y) = 0 and µ3(x) = 0, µ3(y) > 0. Also µ2, µ4 ∈ =N2,M2
with

µ2(x) = 0, µ2(y) > 0 and µ4(x) > 0, µ4(y) = 0. Therefore =N1,M1
and =N2,M2

are T1 -topologies.

Theorem 3.22. Assume that α 6= 0, β 6= 0 implies α∗β 6= 0 . If an I -bitopological

space (A,=N1,M1
,=N2,M2

) is pairwise Hausdorff, then =N1,M1
or =N2,M2

is a T2 -

topology.
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Proof. Let x, y ∈ A with x 6= y . Since (A,=N1,M1
,=N2,M2

) is pairwise Hausdorff,

∃ µ1 ∈ =N1,M1
and µ2 ∈ =N2,M2

such that µ1(x) > 0, µ2(y) > 0 and µ1 ∗

µ2 = 1φ , µ1 ¦ µ2 = 1X . Also there exists µ3 ∈ =N1,M1
and µ4 ∈ =N2,M2

such

that µ3(y) > 0, µ4(x) > 0 and µ3 ∗ µ4 = 1φ , µ3 ¦ µ4 = 1X . Since µ1(x) > 0

and µ2(y) > 0, µ1(y) = 0 and µ2(x) = 0. Similarly, µ4(y) = 0, µ3(x) = 0.

Therefore we have (µ1 ∗ µ3)(x) = 0, (µ1 ∗ µ3)(y) = 0 and (µ2 ∗ µ4)(x) = 0,

(µ2 ∗ µ4)(y) = 0. Also (µ1 ¦ µ3)(x) = 1, (µ1 ¦ µ3)(y) = 1 and (µ2 ¦ µ4)(x) = 1,

(µ2 ¦ µ4)(y) = 1. Suppose there is a z 6= x, y and (µ1 ∗ µ3)(z) 6= 0. Then

µ1(z) 6= 0, µ3(z) 6= 0. Hence µ2(z) = 0 and µ4(z) = 0 and so we conclude that

there exists µ5, µ6 ∈ =N1,M1
with µ5(x) > 0, µ5(y) = 0 and µ6(y) > 0, µ6(x) = 0.

Therefore (µ5 ∗ µ6)(x) = 0, (µ5 ¦ µ6)(y) = 0, so that µ5 ∗ µ6 = 1φ . Hence

µ5 ¦ µ6 = 1X . Therefore =N1,M1
is a T2 -topology.

Theorem 3.23. Assume that α 6= 0, β 6= 0 implies α ∗ β 6= 0 . If either =N1,M1

or =N2,M2
is a T2 -topology on A and the other is a T1 -topology on A , then

(A,=N1,M1
,=N2,M2

) is a pairwise weakly Hausdorff space.

Proof. Suppose =N1,M1
is a T2 -topology on A and =N2,M2

is a T1 -topology

on A . Let x, y ∈ A with x 6= y . Then there exists µ1, µ2 ∈ =N1,M1
such

that µ1(x) > 0, µ2(y) > 0 and µ1 ∗ µ2 = 1φ , µ1 ¦ µ2 = 1X . Also there exists

µ3, µ4 ∈ =N2,M2
such that µ3(x) > 0, µ3(y) = 0 and µ4(x) = 0, µ4(y) > 0.

Hence µ1(x) > 0, µ4(y) > 0 and µ3(x) > 0, µ2(y) > 0. Therefore we have

(µ1 ∗ µ4)(x) = 0, (µ1 ∗ µ4)(y) = 0 and (µ3 ∗ µ2)(x) = 0, (µ3 ∗ µ2)(y) = 0. Also

(µ1 ¦ µ4)(x) = 1, (µ1 ¦ µ4)(y) = 1 and (µ3 ¦ µ2)(x) = 1, (µ3 ¦ µ2)(y) = 1. Let

z 6= x, y with (µ1 ∗ µ4)(z) 6= 0. Then µ1(z) 6= 0, µ4(z) 6= 0. Hence µ2(z) = 0

and so (µ3 ∗ µ2)(z) = 0. Therefore we can find µ5 ∈ =N1,M1
and µ6 ∈ =N2,M2

with µ5(x) > 0, µ6(y) > 0 such that µ5 ∗ µ6 = 1φ, µ5 ¦ µ6 = 1X as proved

earlier or µ1 ∗ µ4 = 1φ, µ1 ¦ µ4 = 1X and (A,=N1,M1
,=N2,M2

) is pairwise weakly

Hausdorff.

4 Intuitionistic fuzzy quasi pseudo n-normed lin-

ear spaces

Definition 4.1. Let X be any vector space, ∗ be a continuous t-norm and ¦ a

continuous t-co-norm. Then the functions P,Q : Xn × (0,∞) → [0, 1] satisfying

the following conditions
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(1) P (0, t) + Q(0, t) = 1 where 0 = (0, 0, . . . , 0)

(2) P (x1, x2, . . . , xn − x′
n, t + s) ≥ P (x1, x2, . . . , xn, t) ∗ P (x1, x2, . . . , x

′
n, s)

(3) P (x1, x2, . . . , xn, ·) : (0,∞) → [0, 1] is left continuous

(4) P (x1, x2, . . . , xn, t) → 1 as t → ∞

(5) Q(x1, x2, . . . , xn − x′
n, t + s) ≤ Q(x1, x2, . . . , xn, t) ¦ Q(x1, x2, . . . , x

′
n, s)

(6) Q(x1, x2, . . . , xn, ·) : (0,∞) → [0, 1] is left continuous

(7) Q(x1, x2, . . . , xn, t) → 0 as t → ∞

for all x1, x2, . . . , xn, x′
n ∈ X, t, s ∈ (0,∞) is called an intuitionistic fuzzy quasi

pseudo n-norm on X and (X,P,Q, ∗, ¦) is called an intuitionistic fuzzy quasi

pseudo n-normed linear space or in short i-f-q-p-n -NLS.

Example 4.2. Let X be any real vector space, a∗b = min{a, b}, a¦b = max{a, b} .

Define

P (x1, x2, ..., xn, t) =







0 if (x1, x2, . . . , xn) 6= 0 and t ∈ (0, 1]

1 − 1

t if (x1, x2, . . . , xn) 6= 0 and t ∈ (1,∞)

1 if (x1, x2, . . . , xn) = 0 and t ∈ (0,∞)

and

Q(x1, x2, ..., xn, t) =







1 if (x1, x2, . . . , xn) 6= 0 and t ∈ (0, 1]

1

t if (x1, x2, . . . , xn) 6= 0 and t ∈ (1,∞)

0 if (x1, x2, . . . , xn) = 0 and t ∈ (0,∞)

.

(i) Clearly P (0, t) + Q(0, t) = 1.

(ii) Since 1

t+s < 1

t and 1

t+s < 1

s , 1 − 1

t+s ≥ 1 − 1

t ∗ 1 − 1

s for all t, s > 0.

Hence P (x1, x2, . . . , xn−x′
n, t+s) ≥ P (x1, x2, . . . , xn, t)∗Q(x1, x2, . . . , x

′
n, s).

(iii) P (x1, x2, . . . , xn, ·) : (0,∞) → [0, 1] is left continuous.

(iv) P (x1, x2, . . . , xn, t) → 1 as t → ∞ .

(v) Since 1

t+s ≤ 1

t ¦ 1

s ,

Q(x1, x2, . . . , xn − x′
n, t + s) ≤ Q(x1, x2, . . . , xn, t) ¦ Q(x1, x2, . . . , x

′
n, s).
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(vi) Q(x1, x2, . . . , xn, ·) : (0,∞) → [0, 1] is left continuous.

(vii) Q(x1, x2, . . . , xn, t) → 0 as t → ∞ .

Hence (X,P,Q, ∗, ¦) is an i-f-q-p-n -NLS. Also P ((x1/5, x2, . . . , xn), 4/5) = 0

and P ((x1, x2, . . . , xn), (4/5)/|1/5|) = 3/4. Therefore P (kx1, x2, . . . , xn, t) 6=

P (x1, x2, . . . , xn, t/|k|) for t = 4/5 and k = 1/5. Hence (X,P,Q, ∗, ¦) is not

an i-f-n -NLS.

Definition 4.3. An i-f-q-p-n -norm P,Q is said to be an intuitionistic fuzzy

quasi n-norm if P (x1, x2, . . . , xn, t) = 1 and Q(x1, x2, . . . , xn, t) = 0, ∀ t im-

plies (x1, x2, . . . , xn) = (0, 0, . . . , 0).

Definition 4.4. An i-f-q-p-n -norm P,Q is said to be an intuitionistic fuzzy

pseudo n-norm if P (x1, x2, . . . , kxn, t) = P (x1, x2, . . . , xn, t
|k| ) and Q(x1, x2, . . . ,

kxn, t) = Q(x1, x2, . . . , xn, t
|k| ) for all scalar k and (x1, x2, . . . , xn) ∈ Xn .

Remark 4.5. P (0, 0, . . . , k0, t) = P (0, 0, . . . , 0, t
|k| ) = 1 and Q(0, 0, . . . , k0, t) =

Q(0, 0, . . . , 0, t
|k| ) = 0, i.e., P (0, s) = 1 and Q(0, s) = 0 where s is positive.

Proposition 4.6. Let P,Q be i-f-q-p-n-norm on X and suppose

P1(x1, x2, . . . , xn, t) = P (x1, x2, . . . ,−xn, t),

Q1(x1, x2, . . . , xn, t) = Q(x1, x2, . . . ,−xn, t)

where (x1, x2, . . . , xn) ∈ Xn . Then P1, Q1 is also an i-f-q-p-n-norm on X .

Proof. (i) P1(0, t) = P (0, t) = 1 and Q1(0, t) = Q(0, t) = 0 where 0 =

(0, 0, . . . , 0).

(ii) P1(x1, x2, . . . , xn − x′
n, t + s)

= P (x1, x2, . . . , x
′
n − xn, t + s)

= P (x1, x2, . . . ,−xn − (−x′
n), t + s)

≥ P (x1, x2, . . . ,−xn, t) ∗ P (x1, x2, . . . ,−x′
n, s)

≥ P1(x1, x2, . . . , xn, t) ∗ P1(x1, x2, . . . , x
′
n, s).

Similarly, Q1(x1, x2, . . . , xn − x′
n, t + s)

≤ Q(x1, x2, . . . , xn, t) ¦ Q(x1, x2, . . . , x
′
n, s).
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(iii) Since P (x1, x2, . . . , xn, ·), Q(x1, x2, . . . , xn, ·) : (0,∞) → [0, 1] is left contin-

uous, P1(x1, x2, . . . , xn, ·) and Q1(x1, x2, . . . , xn, ·) : (0,∞) → [0, 1] is also

left continuous.

(iv) Also P1(x1, x2, . . . , xn, t) → 1 and Q1(x1, x2, . . . , xn, t) → 0 as t → ∞ .

Therefore P1, Q1 is also an i-f-q-p-n -norm on X .

Remark 4.7. P1, Q1 defined by P1(x1, x2, . . . , xn, t) = P (x1, x2, . . . ,−xn, t),

Q1(x1, x2, . . . , xn, t) = Q(x1, x2, . . . ,−xn, t) are called conjugate i-f-q-p-n-norm

of P,Q . If P,Q is an intuitionistic fuzzy pseudo n -norm, then P = P1 and

Q = Q1 . Again if P,Q is an intuitionistic fuzzy quasi n -norm, then so is P1, Q1 .

Hereafter we denote the conjugate i-f-q-p-n -norm of P,Q by −P,−Q .

Definition 4.8. A function ′ : [0, 1] → [0, 1] is said to be an order reverting

involution on [0, 1] if it satisfies the following conditions

(i) α ≤ β ⇒ β′ ≤ α′

(ii) α′′ = α for α, β ∈ [0, 1].

Definition 4.9. Let A be an i-f-n -NLS along with an order reverting involution ′

on I and α ∈ (0, 1], ε > 0 and x ∈ A . The fuzzy set N′
α(x, ε) ∈ IX is defined as

N′
α(x, ε)(y) =







α if N(x − y, ε) > α′ and M(x − y, ε) < 1 − α′

0 otherwise

where y ∈ A is called the α-open sphere in an i-f-n-NLS with an order reverting

involution ′ on I and centre x .

Definition 4.10. Let A be an i-f-n -NLS with an order reverting involution ′

on I . A fuzzy set µ ∈ IX is said to be open if µ(x) > 0 implies there exists ε > 0

and α ∈ (0, 1] such that N′
α(x, ε) ⊆ µ .

Note 4.11. For the rest of the paper we consider only t-norms for which α 6= 0,

β 6= 0 implies α ∗ β 6= 0.

Theorem 4.12. Let A be an i-f-n-NLS with an order reverting involution ′ on I .

Then =N ′,M ′ = {µ ∈ IX : µ is open} is an I -topology on A .

Proof. Proof of this Theorem is obvious.
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Theorem 4.12 implies that an i-f-n -norm generates an I -topology. The i-f-q-

p-n -norm is a weak form of an i-f-n -norm, but still it generates an I -topology as

shown by the following.

Theorem 4.13. Let (X,P,Q, ∗, ¦) be an i-f-q-p-n-NLS along with an order re-

verting involution ′ on I . Then the collection =P,Q = {µ ∈ IX : µ is open} is an

I -topology on (X,P,Q, ∗, ¦) .

Proof. (i) Clearly 1X , 1φ ∈ =P,Q .

(ii) Let µ1, µ2 ∈ =P,Q and suppose there exists an element x such that (µ1 ∗

µ2)(x) > 0. Then µ1(x) > 0 and µ2(x) > 0, where x = (x1, x2, . . . , xn) ∈

Xn , i.e., there are α1, α2 ∈ (0, 1] and ε1, ε2 > 0 3 N′
α1

(x, ε1) ⊆ µ1 and

N′
α2

(x, ε2) ⊆ µ2 . Consider α = α1 ∗ α2 and ε = min{ε1, ε2} .

Since α′ ≥ α′
1, P (x1, x2, . . . , xn, ε) > α′ and Q(x1, x2, . . . , xn, ε) < 1 − α′

⇒ P (x1, x2, . . . , xn, ε) > α′
1 and Q(x1, x2, . . . , xn, ε) < 1 − α′

1 .

Since ε ≤ ε1 , P (x1, x2, . . . , xn, ε1) > α′
1 and Q(x1, x2, . . . , xn, ε1) < 1 − α′

1

and hence N′
α(x, ε) ⊆ N′

α1
(x, ε1) ⊆ µ1 and N′

α(x, ε) ⊆ N′
α2

(x, ε2) ⊆ µ2 ,

which implies that N′
β(x, ε) ⊆ N′

α(x, ε)∗N′
α(x, ε) ⊆ µ1∗µ2 where β = α∗α .

Hence µ1, µ2 ∈ =P,Q implies µ1 ∗ µ2 ∈ =P,Q .

(iii) Let {µi} be any collection of members of =P,Q . If ∨µi(x) > 0, then

µj(x) > 0 for some j . Hence ∃ α ∈ (0, 1] and ε > 0 3 N′
α(x, ε) ⊆ µj ⊆ ∨µi .

Thus =P,Q is an I -topology on (X,P,Q, ∗, ¦).

Proposition 4.14. Let (X,P,Q, ∗, ¦) be an i-f-q-p-n-NLS along with an order

reverting involution ′ on I . The fuzzy set µ in IX is open if and only if µ is the

union of open sets in IX .

Proof. Let µ ∈ =P,Q and µ(x) > 0. Then there exists α ∈ (0, 1], ε > 0 and

x ∈ A 3 N′
α(x, ε) ⊆ µ . Consider N◦

α(x, ε) defined by

N◦
α(x, ε)(y) =







µ(x) if P (x − y, ε) > α′ and Q(x − y, ε) < 1 − α′

0 otherwise

where y ∈ A . Then clearly µ = ∨N◦
α(x, ε) and each N◦

α(x, ε) is an open set.
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Theorem 4.15. Let (X,P,Q, ∗, ¦) be an i-f-q-p-n-NLS along with an order re-

verting involution ′ on I . Then P,Q is an intuitionistic fuzzy quasi n-norm on A

if and only if (A,=P,Q) is a T1 -space.

Proof. If P,Q is an intuitionistic fuzzy quasi n -norm on A , then for all x, y ∈ A

with x 6= y , we have P (x−y, t) = r and Q(x−y, t) = 1−r for some 0 < r < 1 and

for some t > 0. Now it is possible to choose one s such that s′ > r . Consider the

s-open spheres µ1 = N′
s(x, t

2
) and µ2 = N′

s(y, t
2
). We claim that N′

s(x, t
2
)(y) = 0

and N′
s(y, t

2
)(x) = 0. If not P (x − y, t

2
) > s′ and Q(x − y, t

2
) < 1 − s′ , i.e.,

P (x − y, t) = P ((x − y) + 0, t)

≥ P (x − y,
t

2
) ∗ P (0,

t

2
)

> s′ > r and

Q(x − y, t) ≤ Q(x − y,
t

2
) ¦ Q(0,

t

2
)

< 1 − s′ < 1 − r which is a contradiction.

Also µ1(x) = s and µ2(y) = s > 0. Hence (A,=P,Q) is a T1 -space.

Conversely, suppose (A,=P,Q) is a T1 -space. Take x, y ∈ A with x 6= y .

Then there exists µ1, µ2 ∈ =P,Q such that µ1(x) > 0, µ1(y) = 0 and µ2(y) > 0,

µ2(x) = 0. Hence ∃ s1, s2 ∈ (0, 1] and t1, t2 > 0 3 N′
s1

(x, t1) ⊆ µ1 and N′
s2

(y, t2)

⊆ µ2 . Now since µ1(y) = 0, P (x − y, t1) ≤ s1 and Q(x − y, t1) ≥ 1 − s1 . Sim-

ilarly P (y − x, t2) ≤ s2 and Q(y − x, t2) ≥ 1 − s2 . Hence P (x − y, t) 6= 1 and

Q(x − y, t) 6= 0. This means that, suppose x 6= 0, then there is a t > 0 such that

P (x − 0, t) 6= 1 and Q(x − 0, t) 6= 0 where 0 = (0, 0, . . . , 0). Hence P (x, t) = 1

and Q(x, t) = 0 if and only if x = 0.

Theorem 4.16. Let (A,=P,Q,=−P,−Q) be an I -bitopological space generated by

the conjugate pairs of i-f-q-p-n-norms P,Q and −P,−Q along with an order

reverting involution ′ on I . If P,Q is an intuitionistic fuzzy quasi n-norm, then

(A,=P,Q,=−P,−Q) is a pairwise Hausdorff space.

Proof. Since P,Q is an intuitionistic fuzzy quasi n -norm, −P,−Q is also an intu-

itionistic fuzzy quasi n -norm. Hence =P,Q,=−P,−Q are T1 -spaces. Let x, y ∈ A

with x 6= y . Since =P,Q is a T1 -space, there exists µ1, µ2 ∈ =P,Q 3 µ1(x) > 0,

µ1(y) = 0 and µ2(y) > 0, µ2(x) = 0. Similarly ∃ µ3, µ4 ∈ =−P,−Q such that

µ3(x) > 0, µ3(y) = 0 and µ4(x) = 0, µ4(y) > 0. Now ∃ α1, α2 ∈ (0, 1] and
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ε1, ε2 > 0 3 N′
α1

(x, ε1) ⊆ µ1 and N′
α2

(x, ε2) ⊆ µ3 . Since N′
α1

(x, ε1)(y) =

0, P (x − y, ε1) ≤ α′
1 and Q(x − y, ε1) ≥ 1 − α′

1 .

Similarly −P (x−y, ε2) ≤ α′
2 and −Q(x−y, ε2) ≥ 1−α′

2 . Let α = α1 ∗α2 and

ε = min{ε1, ε2} . Now it is possible to choose one 0 < s < 1 such that s′ ∗ s′ > α′ .

Consider the s-open spheres N′
s(x, ε

2
) in =P,Q and N′

s(y, ε
2
) in =−P,−Q . Then it

is enough to prove N′
s(x, ε

2
) ∗ N′

s(y, ε
2
) = 1φ .

Suppose N′
s(x, ε

2
)∗N′

s(y, ε
2
)(z) > 0 for some z ∈ A , then N′

s(x, ε
2
)(z) > 0 and

N′
s(y, ε

2
)(z) > 0. Hence P (x−z, ε

2
) > s′ , Q(x − z, ε

2
) < 1 − s′ and −P (y−z, ε

2
) >

s′,−Q(y − z, ε
2
) < 1− s′ . Also it is possible to choose δ such that 0 < δ < ε

2
and

P (x − z, δ) > s′, Q(x − z, δ) < 1 − s′ . Now

−P (x − y,
ε

2
) ≥ −P (x − y, ε)

≥ −P ((x − z) − (y − z), ε)

≥ −P (x − z,
ε

2
) ∗ −P (y − z,

ε

2
)

≥ P (z − x,
ε

2
) ∗ −P (y − z,

ε

2
)

≥ P (0 − (x − z), δ + (
ε

2
− δ)) ∗ −P (y − z,

ε

2
)

≥ P (0,
ε

2
− δ) ∗ P (x − z, δ) ∗ (−P (y − z,

ε

2
))

= 1 ∗ P (x − z, δ) ∗ (−P (y − z,
ε

2
))

= P (x − z, δ) ∗ (−P (y − z,
ε

2
))

> s′ ∗ s′ > α′.

Hence −P (x−y, ε
2
) > α′ . Therefore −P (x−y, ε

2
) > α′

2 . Similarly −Q(x−y, ε
2
) <

1 − α′
2 , which is a contradiction.

Similarly there is a s-open sphere N′
s(y, ε

2
) in =P,Q and N′

s(x, ε
2
) in =−P,−Q

such that N′
s(y, ε

2
) ∗ N′

s(x, ε
2
) = 0.

Theorem 4.17. Let (X,P,Q, ∗, ¦) be an i-f-q-p-n-NLS along with an order in-

verting involution ′ on I . Then (A,=P,Q) is a T2 -space if and only if P,Q is an

intuitionistic fuzzy quasi n-norm on A .

Proof. Suppose P,Q is an intuitionistic fuzzy quasi n -norm on A . If x, y ∈ A

with x 6= y , then P (x − y, t) 6= 1 and Q(x − y, t) 6= 0 for some t . Suppose

P (x− y, t) = r and Q(x− y, t) = 1− r where 0 < r < 1. Now choose s > 0 such

that s′ ∗ s′ > r . Then N′
s(x, t

2
) ∗ N′

s(y, t
2
) = 1φ . Hence (A,=P,Q) is a T2 -space.
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Conversely, suppose that (A,=P,Q) is a T2 -space. Let x 6= y in A . Then

there exists =P,Q open sets µ1, µ2 such that µ1(x) > 0, µ2(y) > 0 with µ1 ∗ µ2 =

1φ, µ1 ¦ µ2 = 1X . Since µ1(x) > 0, µ2(x) = 0 and µ2(y) > 0, µ1(y) = 0. Hence

(A,=P,Q) is a T1 -space and so by Theorem 4.15 P,Q is an intuitionistic fuzzy

quasi n -norm on A .

Note 4.18. In general a T2 -space need not be a T1 -space. However if P,Q is

an intuitionistic fuzzy quasi n -norm, then (A,=P,Q) is a T2 -space as well as a

T1 -space.

Theorem 4.19. Let (X,P,Q, ∗, ¦) be an i-f-q-p-n-NLS along with an order in-

verting involution ′ on I . The i-f-q-p-n-norm P,Q is an intuitionistic fuzzy

quasi n-norm if and only if the I -bitopological space (A,=P,Q,=−P,−Q) is pair-

wise Hausdorff.

Proof. Suppose (A,=P,Q,=−P,−Q) is a pairwise Hausdorff space. Then =P,Q and

=−P,−Q are T1 -topologies. Hence P,Q and −P,−Q are intuitionistic fuzzy quasi

n -norms on A .

Conversely, suppose P,Q is an intuitionistic fuzzy quasi n -norm, then by The-

orem 4.16, the I -bitopological space (A,=P,Q,=−P,−Q) is pairwise Hausdorff.

Theorem 4.20. If P,Q and −P,−Q are two i-f-q-p-n-norms on A , then the

I -bitopological space (A,=P,Q,=−P,−Q) is pairwise weakly Hausdorff if and only

if P,Q and −P,−Q are intuitionistic fuzzy quasi n-norms.

Proof. Suppose (A,=P,Q,=−P,−Q) is pairwise weakly Hausdorff space, then =P,Q

and =−P,−Q are T1 -topologies. Hence P,Q and −P,−Q are intuitionistic fuzzy

quasi n -norms on A .

Conversely, suppose P,Q and −P,−Q are intuitionistic fuzzy quasi n -norms

on A , then =P,Q and =−P,−Q are T2 -topologies. Let x and y be two distinct

points in A . Then ∃ µ1(x) > 0 and µ2(y) > 0 such that µ1 ∗ µ2 = 1φ and ∃ µ3

and µ4 in =P1,Q1
with µ3(x) > 0 and µ4(y) > 0 such that µ3 ∗ µ4 = 1φ . It is

enough if we show that µ1 ∗ µ4 = 1φ or µ2 ∗ µ3 = 1φ . Clearly (µ1 ∗ µ4)(x) = 0,

(µ1 ∗ µ4)(y) = 0, (µ2 ∗ µ3)(x) = 0, (µ2 ∗ µ3)(y) = 0. Suppose there exists an

element z ∈ A such that (µ1 ∗ µ4)(z) 6= 0. Then µ1(z) > 0 and µ4(z) > 0 and so

µ2(z) = 0, µ3(z) = 0 and hence we conclude that µ1 ∗µ4 = 1φ or µ2 ∗µ3 = 1φ .

Note 4.21. In general, a pairwise weakly Hausdorff space need not be a pairwise

Hausdorff space. However if P,Q is an intuitionistic fuzzy quasi n -norm, then
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(A,=P,Q,=−P,−Q) is a pairwise weakly Hausdorff as well as a pairwise Hausdorff

space as proved in the following.

Theorem 4.22. (A,=P,Q,=−P,−Q) is a pairwise weakly Hausdorff space if and

only if (A,=P,Q,=−P,−Q) is a pairwise Hausdorff space.

Proof. Suppose (A,=P,Q,=−P,−Q) is a pairwise weakly Hausdorff space, then

=P,Q or =−P,−Q is a T2 -space. Hence by Theorem 4.17, P,Q is an intuition-

istic fuzzy quasi n -norm and so by Theorem 4.19 (A,=P,Q,=−P,−Q) is a pairwise

Hausdorff space.

Conversely, suppose (A,=P,Q,=−P,−Q) is a pairwise Hausdorff space, then

trivially it is a pairwise weakly Hausdorff space.
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