I-Bitopological Spaces Generated by Intuitionistic Fuzzy n-Norms

N. Thillaigovindan, Iqbal Jebril* and S. Anita Shanthi

Received 16 May 2010
Revised 9 February 2011
Accepted 23 February 2011

Abstract

In this paper we define I-bitopological space $\left(A, \Im_{P, Q}, \Im_{-P,-Q}\right)$ where $\Im_{P, Q}$ and $\Im_{-P,-Q}$ are I-topologies generated by the intuitionistic fuzzy quasi pseudo n-norms P, Q and $-P,-Q$. Further a charcterization of pairwise Hausdorff I-bitopological space is also established.

Keywords: Intuitionistic fuzzy n-norms, intuitionistic fuzzy quasi pseudo n norm, pairwise Hausdorff I-bitopological space

2000 Mathematics Subject Classification: 54A40, 46S40, 03E72

1 Introduction

Motivated by the theory of n-normed linear space $[8,9,11,13,15]$ and fuzzy normed linear space $[1,2,3,4,5,6,7,10,12,14]$ the notions of fuzzy n-normed linear space [16] and intuitionistic fuzzy n-normed linear space [17] have been developed. In [19,20] I-topological spaces and I-bitopological spaces generated by fuzzy norm have been discussed.

In this paper we define intuitionistic fuzzy quasi pseudo n-norm and study the I-topology and I-bitopology generated by this new norm. A characterization of I-topological spaces and I-bitopological spaces are also established.

[^0]
2 Preliminaries

In this section we recall some useful definitions and results.
Definition 2.1. [18] A binary operation $*:[0,1] \times[0,1] \rightarrow[0,1]$ is a continuous t-norm if $*$ satisfies the following conditions:
(i) $*$ is commutative and associative
(ii) $*$ is continuous
(iii) $a * 1=a$, for all $a \in[0,1]$
(iv) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ and $a, b, c, d \in[0,1]=I$.

Definition 2.2. [18] A binary operation $\diamond:[0,1] \times[0,1] \rightarrow[0,1]$ is a continuous t-co-norm if \diamond satisfies the following conditions:
(i) \diamond is commutative and associative
(ii) \diamond is continuous
(iii) $a \diamond 0=a$, for all $a \in[0,1]$
(iv) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$ and $a, b, c, d \in[0,1]$.

Remark 2.3. [20] The algebraic operations on I can be extended pointwise to the set I^{X} of all maps from $X \rightarrow I$. i.e., If $\mu_{1}, \mu_{2} \in I^{X}$ then $\left(\mu_{1} * \mu_{2}\right)(x)=$ $\mu_{1}(x) * \mu_{2}(x)$ for all $x \in X$.

Definition 2.4. [20] Let X be a non-empty set. A subset \Im of I^{X} is called an I-topology on X if \Im satisfies the following conditions:
(i) $1_{X}, 1_{\phi} \in \Im$
(ii) $\mu_{1}, \mu_{2} \in \Im$ implies $\mu_{1} * \mu_{2} \in \Im$
(iii) $\left\{\mu_{i} \mid i \in\right.$ index set $\} \subseteq \Im$ implies $\vee \mu_{i} \in \Im$.

Example 2.5. [20] Let $X=\{a, b\}$ and $*$ be defined by $r * s=\min \{r, s\}$. Consider $\mu_{1} \in I^{X}$ defined by $\mu_{1}(x)=\left\{\begin{array}{lll}\frac{1}{2} & \text { if } & x=a \\ 0 & \text { if } & x=b\end{array}\right.$.
Then $\Im=\left\{1_{X}, 1_{\phi}, \mu_{1}\right\}$ is an I-topology on X. In this example if $*$ is a product norm then $\Im=\left\{1_{X}, 1_{\phi}, \mu_{1}\right\}$ is not an I-topology on X since $\mu_{1} * \mu_{1}$ is not an element in \Im.

Definition 2.6. [11] Let $\mathrm{n} \in \mathbb{N}$ (natural numbers) and X be a real linear space of dimension greater than or equal to n. A real valued function $\|\bullet, \ldots, \bullet\|$ on $\underbrace{X \times \cdots \times X}_{n}=X^{n}$ satisfying the following four properties:

1. $\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|=0$ if and only if $x_{1}, x_{2}, \ldots, x_{n}$ are linearly dependent
2. $\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|$ is invariant under any permutation of $x_{1}, x_{2}, \ldots, x_{n}$
3. $\left\|x_{1}, x_{2}, \ldots, k x_{n}\right\|=|k|\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|$, for any $k \in R$ (set of real numbers)
4. $\left\|x_{1}, x_{2}, \ldots, x_{n-1}, y+z\right\| \leq\left\|x_{1}, x_{2}, \ldots, x_{n-1}, y\right\|+\left\|x_{1}, x_{2}, \ldots, x_{n-1}, z\right\|$
is called an n-norm on X and the pair $(X,\|\bullet, \ldots, \bullet\|)$ is called an n-normed linear space.

Definition 2.7. [17] An intuitionistic fuzzy n-normed linear space or in short i-f- n-NLS is an object of the form

$$
A=\left\{\left(X, N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right), M\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)\right) /\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}\right\}
$$

where X is a linear space over a field $\mathbb{F}, *$ is a continuous t-norm, \diamond is a continuous t-co-norm and N, M are fuzzy sets on $X^{n} \times(0, \infty) ; N$ denotes the degree of membership and M denotes the degree of non-membership of $\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \in$ $X^{n} \times(0, \infty)$ satisfying the following conditions:
(1) $N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)+M\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \leq 1$
(2) $N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)>0$
(3) $N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=1$ if and only if $x_{1}, x_{2}, \ldots, x_{n}$ are linearly dependent
(4) $N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)$ is invariant under any permutation of $x_{1}, x_{2}, \ldots, x_{n}$
(5) $N\left(x_{1}, x_{2}, \ldots, c x_{n}, t\right)=N\left(x_{1}, x_{2}, \ldots, x_{n}, \frac{t}{|c|}\right)$ if $c \neq 0, c \in \mathbb{F}$
(6) $N\left(x_{1}, x_{2}, \ldots, x_{n}, s\right) * N\left(x_{1}, x_{2}, \ldots, x_{n}^{\prime}, t\right) \leq N\left(x_{1}, x_{2}, \ldots, x_{n}+x_{n}^{\prime}, s+t\right)$
(7) $N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right):(0, \infty) \rightarrow[0,1]$ is continuous in t
(8) $M\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)>0$
(9) $M\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=0$ if and only if $x_{1}, x_{2}, \ldots, x_{n}$ are linearly dependent
(10) $M\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)$ is invariant under any permutation of $x_{1}, x_{2}, \ldots, x_{n}$
(11) $M\left(x_{1}, x_{2}, \ldots, c x_{n}, t\right)=M\left(x_{1}, x_{2}, \ldots, x_{n}, \frac{t}{|c|}\right)$, if $c \neq 0, c \in \mathbb{F}$
(12) $M\left(x_{1}, x_{2}, \ldots, x_{n}, s\right) \diamond M\left(x_{1}, x_{2}, \ldots, x_{n}^{\prime}, t\right) \geq M\left(x_{1}, x_{2}, \ldots, x_{n}+x_{n}^{\prime}, s+t\right)$
(13) $M\left(x_{1}, x_{2}, \ldots, x_{n}, t\right):(0, \infty) \rightarrow[0,1]$ is continuous in t.

Remark 2.8. For convenience we denote the intuitionistic fuzzy n-normed linear space by $A=(X, N, M, *, \diamond)$.

Example 2.9. Let $(X,\|\bullet, \ldots, \bullet\|)$ be an n-normed linear space, where $X=R$.
Define $a * b=\min \{a, b\}$ and $a \diamond b=\max \{a, b\}$, for all $a, b \in[0,1]$,

$$
\begin{aligned}
& N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=e^{-\left\|x_{1}, x_{2}, \ldots, x_{n}\right\| / t} \\
& M\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=1-e^{-\left\|x_{1}, x_{2}, \ldots, x_{n}\right\| / t}
\end{aligned}
$$

Then $A=\left\{\left(X, N\left(x_{1}, x_{2}, \ldots, x_{n}, t\right), M\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)\right) /\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}\right\}$ is an i-f- n-NLS.

$3 \quad I$-topological and I-bitopological spaces

Definition 3.1. Let A be an i-f- n-NLS and let $\alpha \in(0,1], \epsilon>0$ and $x \in A$. The fuzzy set $\mathbf{N}_{\alpha}(x, \epsilon)$ in A is defined as

$$
\mathbf{N}_{\alpha}(x, \epsilon)(y)= \begin{cases}\alpha & \text { if } N(x-y, \epsilon)>1-\alpha \text { and } M(x-y, \epsilon)<\alpha \\ 0 & \text { otherwise }\end{cases}
$$

for $y \in A$ is called the α-open sphere in an $i-f-n-N L S$ with center at x.
Definition 3.2. Let A be an i-f- n-NLS. A fuzzy set $\mu \in I^{X}$ is said to be open if $\mu(x)>0$ implies there exists $\epsilon>0$ and $\alpha \in(0,1]$ such that $\mathbf{N}_{\alpha}(x, \epsilon) \subseteq \mu$.

Theorem 3.3. Let A be an i-f-n-NLS. Then $\Im_{N, M}=\left\{\mu \in I^{X}: \mu\right.$ is open $\}$ is an I-topology on A.

Proof. (i) Clearly, $1_{X}, 1_{\phi} \in \Im_{N, M}$.
(ii) Proof of $\mu_{1}, \mu_{2} \in \Im_{N, M}$ implies $\mu_{1} * \mu_{2} \in \Im_{N, M}$.
$\mu_{1}, \mu_{2} \in \Im_{N, M} \Rightarrow \mu_{1}, \mu_{2} \in I^{X}$ and μ_{1}, μ_{2} are open. $\mu_{1}, \mu_{2} \in I^{X} \Rightarrow \mu_{1} * \mu_{2} \in I^{X}$
(by definition of $*$). μ_{1} is open. Therefore $\mu_{1}(x)>0 \Rightarrow \exists \epsilon_{1}>0$ and $\alpha \in(0,1]$ such that $\mathbf{N}_{\alpha}\left(x, \epsilon_{1}\right) \subseteq \mu_{1}$. μ_{2} is open. Therefore $\mu_{2}(x)>0 \Rightarrow \exists \epsilon_{2}>0$ and $\alpha \in(0,1]$ such that $\mathbf{N}_{\alpha}\left(x, \epsilon_{2}\right) \subseteq \mu_{2}$. Let $\epsilon=\min \left(\epsilon_{1}, \epsilon_{2}\right)$. Therefore $\mathbf{N}_{\alpha}(x, \epsilon) \subseteq \mu_{1}$ and $\mathbf{N}_{\alpha}(x, \epsilon) \subseteq \mu_{2} \Rightarrow \mathbf{N}_{\alpha}(x, \epsilon) \subseteq \mu_{1} * \mu_{2}$ (by condition (iv) in definition of $*$) $\Rightarrow \mu_{1} * \mu_{2}$ is open. $\mu_{1} * \mu_{2} \in I^{X}$ and $\mu_{1} * \mu_{2}$ is open $\Rightarrow \mu_{1} * \mu_{2} \in \Im_{N, M}$.
(iii) Let $\left\{\mu_{i}\right\}$ be any collection of members of $\Im_{N, M}$. Proof of $\bigcup_{i \in I} \mu_{i} \in \Im_{N, M}$. If $\left(\bigcup_{i \in I} \mu_{i}\right)(x)>0, \exists$ an i_{0}, such that $\mu_{i_{0}}(x)>0$. So $\exists \epsilon>0$ and $\alpha \in(0,1]$ such that $\mathbf{N}_{\alpha}(x, \epsilon) \subseteq \mu_{i_{0}} \subseteq \bigcup_{i \in I} \mu_{i}$. Hence $\bigcup_{i \in I} \mu_{i} \in \Im_{N, M}$.

Remark 3.4. $\Im_{N, M}$ is called an I-topology on A generated by the intuitionistic fuzzy n-norms N, M and $\left(A, \Im_{N, M}\right)$ is called as an I-topological space.

Definition 3.5. Let $\left(A, \Im_{N_{1}, M_{1}}\right)$ and $\left(B, \Im_{N_{2}, M_{2}}\right)$ be two I-topological spaces. A mapping $f^{\rightarrow}:\left(A, \Im_{N_{1}, M_{1}}\right) \rightarrow\left(B, \Im_{N_{2}, M_{2}}\right)$ is called I-continuous if $f^{\leftarrow}(v) \in$ $\Im_{N_{1}, M_{1}}$ for all $v \in \Im_{N_{2}, M_{2}}$.

Theorem 3.6. Let $\left(A, \Im_{N_{1}, M_{1}}\right),\left(B, \Im_{N_{2}, M_{2}}\right),\left(C, \Im_{N_{3}, M_{3}}\right)$ be three I-topological spaces and $f \rightarrow:\left(A, \Im_{N_{1}, M_{1}}\right) \rightarrow\left(B, \Im_{N_{2}, M_{2}}\right), g^{\rightarrow}:\left(B, \Im_{N_{2}, M_{2}}\right) \rightarrow\left(C, \Im_{N_{3}, M_{3}}\right)$ be two I-continuous mappings. Then $g \rightarrow \circ \rightarrow$ is I-continuous.

Proof. $f \rightarrow:\left(A, \Im_{N_{1}, M_{1}}\right) \rightarrow\left(B, \Im_{N_{2}, M_{2}}\right)$ is I-continuous implies $f \leftarrow(v) \in \Im_{N_{1}, M_{1}}$ $\forall v \in \Im_{N_{2}, M_{2}} . g^{\rightarrow}:\left(B, \Im_{N_{2}, M_{2}}\right) \rightarrow\left(C, \Im_{N_{3}, M_{3}}\right)$ is I-continuous implies $g^{\leftarrow}(w) \in$ $\Im_{N_{2}, M_{2}} \forall w \in \Im_{N_{3}, M_{3}}$. Now

$$
\begin{aligned}
(g \circ f)^{\leftarrow}(w) & \left.=f^{\leftarrow} g^{\leftarrow}(w)\right) \\
& =f^{\leftarrow}(v) \in \Im_{N_{1}, M_{1}}, \forall w \in \Im_{N_{3}, M_{3}}
\end{aligned}
$$

which implies $g \rightarrow \circ f \rightarrow$ is I-continuous.
Definition 3.7. Let $\Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}$ be two I-topologies on A. Then $\left(A, \Im_{N_{1}, M_{1}}\right.$, $\Im_{N_{2}, M_{2}}$) is called an I-bitopological space.

Example 3.8. Let $X=\{a, b\} . \underbrace{X \times \cdots \times X}_{n}=\left\{x_{1}, \ldots, x_{n}\right\}, x_{i}$ is either a or b.
We define $\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}$.
(i) $\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|=0 \Leftrightarrow\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}=0$

$$
\begin{aligned}
& \Leftrightarrow \sum_{i=1}^{n}\left|x_{i}\right|^{2}=0 \\
& \Leftrightarrow x_{i}=0, \forall i=1,2, \ldots, n \\
& \Leftrightarrow x_{1}, x_{2}, \ldots, x_{n} \text { are linearly dependent. }
\end{aligned}
$$

(ii) Clearly, $\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|$ is invariant under any permutation of $x_{1}, x_{2}, \ldots, x_{n}$.
(iii) $\left\|x_{1}, x_{2}, \ldots, \alpha x_{n}\right\|=\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|\alpha x_{n}\right|^{2}\right)^{\frac{1}{2}}$

$$
=\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+|\alpha|^{2}\left|x_{n}\right|^{2}\right)^{\frac{1}{2}}
$$

$$
=|\alpha|\left\|x_{1}, x_{2}, \ldots, x_{n}\right\| \text { if and only if } \alpha=1 .
$$

(iv) $\left\|x_{1}, x_{2}, \ldots, x_{n-1}, y\right\|+\left\|x_{1}, x_{2}, \ldots, x_{n-1}, z\right\|$

Hence ($X,\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|$) is a n-normed linear space. Let $*, \diamond$ be defined by $r * s=\min \{r, s\}, r \diamond s=\max \{r, s\}$. Consider $\mu_{1}, \mu_{2} \in I^{X}$ defined by

$$
\mu_{1}(x)=\left\{\begin{array}{ll}
\frac{1}{2} & \text { if } x=a \\
0 & \text { if } x=b
\end{array} \quad \text { and } \quad \mu_{2}(x)=\left\{\begin{array}{ll}
\frac{1}{2} & \text { if } x=a \\
\frac{1}{2} & \text { if } x=b
\end{array} .\right.\right.
$$

Let $\Im_{N_{1}, M_{1}}=\left\{1_{X}, 1_{\phi}, \mu_{1}\right\}$ and $\Im_{N_{2}, M_{2}}=\left\{1_{X}, 1_{\phi}, \mu_{2}\right\}$. Then $\left(A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}\right)$ is an I-bitopological space.
Definition 3.9. Let ($A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}$) and ($B, \Im_{N_{3}, M_{3}}, \Im_{N_{4}, M_{4}}$) be two I bitopological spaces. Then $f \rightarrow:\left(A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}\right) \rightarrow\left(B, \Im_{N_{3}, M_{3}}, \Im_{N_{4}, M_{4}}\right)$ is I bicontinuous if $f^{\leftarrow} \leftarrow(u) \in \Im_{N_{1}, M_{1}} \forall u \in \Im_{N_{3}, M_{3}}$ and $f \leftarrow(v) \in \Im_{N_{2}, M_{2}} \forall v \in \Im_{N_{4}, M_{4}}$.
Definition 3.10. An I-topological space $\left(A, \Im_{N, M}\right)$ is called a T_{0}-space if for every pair of distinct points $x, y \in A$, there exists $\mu \in \Im_{N, M}$ such that $\mu(x) \neq$ $\mu(y)$.
Example 3.11. Let $X=\{a, b\}$ and $*, \diamond$ be defined by $r * s=\min \{r, s\}$, $r \diamond s=\max \{r, s\}$. Consider $\mu_{1} \in I^{X}$ defined by
$\mu_{1}(x)=\left\{\begin{array}{ll}\frac{1}{2} & \text { if } x=a \\ 0 & \text { if } x=b\end{array}\right.$. Then $\Im_{N, M}=\left\{1_{X}, 1_{\phi}, \mu_{1}\right\}$ is a I-topology on A. $\left(A, \Im_{N, M}\right)$ is a T_{0}-space, whereas $\left(A, \Im_{N_{2}, M_{2}}\right)$ given in Example 3.8 is not a T_{0}-space.

Definition 3.12. An I-topological space $\left(A, \Im_{N, M}\right)$ is called a T_{1}-space if for any two distinct points $x, y \in A$, there exists $\mu_{1}, \mu_{2} \in \Im_{N, M}$ such that $\mu_{1}(x)>0$, $\mu_{1}(y)=0$ and $\mu_{2}(x)=0, \mu_{2}(y)>0$.
Example 3.13. Let $X=\{a, b\}$ and $*, \diamond$ be defined by $r * s=\min \{r, s\}$, $r \diamond s=\max \{r, s\}$. Consider $\mu_{1}, \mu_{2} \in I^{X}$ defined by

$$
\mu_{1}(x)=\left\{\begin{array}{ll}
\frac{1}{2} & \text { if } x=a \\
0 & \text { if } x=b
\end{array} \quad \text { and } \quad \mu_{2}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=a \\
\frac{1}{2} & \text { if } x=b
\end{array} .\right.\right.
$$

Then $\Im_{N, M}=\left\{1_{X}, 1_{\phi}, \mu_{1}, \mu_{2}\right\}$ is a I-topology on A and $\left(A, \Im_{N, M}\right)$ is a T_{1}-space. The topological space given in Example 3.11 is not a T_{1}-space. It is clear that every T_{1}-space is a T_{0}-space but not the converse.

Definition 3.14. An I-topological space $\left(A, \Im_{N, M}\right)$ is called a T_{2}-space if for any two distinct points $x, y \in A$, there exists $\mu_{1}, \mu_{2} \in \Im_{N, M}$ such that $\mu_{1}(x)>0$, $\mu_{2}(y)>0$ and $\mu_{1} * \mu_{2}=1_{\phi}, \mu_{1} \diamond \mu_{2}=1_{X}$.

Example 3.15. Let $X=\{a, b\}$ and $*, \diamond$ be defined by $r * s=\max \{0, r+s-1\}$, $r \diamond s=\min \{1,2-r-s\}$. Consider $\mu_{1}, \mu_{2} \in I^{X}$ defined by

$$
\mu_{1}(x)=\left\{\begin{array}{ll}
\frac{1}{2} & \text { if } x=a \\
0 & \text { if } x=b
\end{array} \quad \text { and } \quad \mu_{2}(x)= \begin{cases}0 & \text { if } x=a \\
\frac{1}{2} & \text { if } x=b\end{cases}\right.
$$

Then $\Im_{N, M}=\left\{1_{X}, 1_{\phi}, \mu_{1}, \mu_{2}\right\}$ is a I-topology on A. The I-topological space $\left(A, \Im_{N, M}\right)$ is a T_{2}-space.

Definition 3.16. An I-bitopological space $\left(A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}\right)$ is said to be pairwise Hausdorff if for any two distinct points $x, y \in A$, there exists a $\Im_{N_{1}, M_{1}}$ open set μ_{1} and a $\Im_{N_{2}, M_{2}}$ open set μ_{2} such that $\mu_{1}(x)>0, \mu_{2}(y)>0$ and $\mu_{1} * \mu_{2}=1_{\phi}, \mu_{1} \diamond \mu_{2}=1_{X}$ and there exists a $\Im_{N_{1}, M_{1}}$ open set μ_{3} and a $\Im_{N_{2}, M_{2}}$ open set μ_{4} such that $\mu_{3}(y)>0, \mu_{4}(x)>0$ and $\mu_{3} * \mu_{4}=1_{\phi}, \mu_{3} \diamond \mu_{4}=1_{X}$.

Example 3.17. Let $X=\{a, b\}$ and $*, \diamond$ be defined by $r * s=\max \{0, r+s-1\}$, $r \diamond s=\min \{1,2-r-s\}$. Consider $\mu_{1}, \mu_{2}, \mu_{3} \in I^{X}$ defined by

$$
\begin{aligned}
& \mu_{1}(x)=\left\{\begin{array}{ll}
\frac{1}{2} & \text { if } x=a \\
0 & \text { if } x=b
\end{array}, \quad \mu_{2}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=a \\
\frac{1}{2} & \text { if } x=b
\end{array} \quad\right. \text { and }\right. \\
& \mu_{3}(x)= \begin{cases}\frac{1}{2} & \text { if } x=a \\
\frac{1}{2} & \text { if } x=b\end{cases}
\end{aligned}
$$

Then $\Im_{N_{1}, M_{1}}=\left\{1_{X}, 1_{\phi}, \mu_{1}, \mu_{3}\right\}, \Im_{N_{2}, M_{2}}=\left\{1_{X}, 1_{\phi}, \mu_{2}, \mu_{3}\right\}$ are I-topologies on A. The I-bitopological space $\left(A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}\right)$ is a pairwise Hausdorff space.

Definition 3.18. An I-bitopological space $\left(A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}\right)$ is said to be pairwise weakly Hausdorff if for any two distinct points $x, y \in A$, there exists a $\Im_{N_{1}, M_{1}}$ open set μ_{1} and a $\Im_{N_{2}, M_{2}}$ open set μ_{2} such that $\mu_{1}(x)>0, \mu_{2}(y)>0$ and $\mu_{1} * \mu_{2}=1_{\phi}, \mu_{1} \diamond \mu_{2}=1_{X}$ or there exists a $\Im_{N_{1}, M_{1}}$ open set μ_{3} and a $\Im_{N_{2}, M_{2}}$ open set μ_{4} such that $\mu_{3}(y)>0, \mu_{4}(x)>0$ and $\mu_{3} * \mu_{4}=1_{\phi}, \mu_{3} \diamond \mu_{4}=1_{X}$.

Example 3.19. Let $X=\{a, b\}$ and $*, \diamond$ be defined by $r * s=\max \{0, r+s-1\}$, $r \diamond s=\min \{1,2-r-s\}$. Consider $\mu_{1}, \mu_{2} \in I^{X}$ defined by

$$
\mu_{1}(x)=\left\{\begin{array}{ll}
\frac{1}{2} & \text { if } x=a \\
0 & \text { if } x=b
\end{array} \quad \text { and } \quad \mu_{2}(x)= \begin{cases}\frac{1}{2} & \text { if } x=a \\
\frac{1}{2} & \text { if } x=b\end{cases}\right.
$$

Then $\Im_{N_{1}, M_{1}}=\left\{1_{X}, 1_{\phi}, \mu_{1}\right\}, \Im_{N_{2}, M_{2}}=\left\{1_{X}, 1_{\phi}, \mu_{2}\right\}$ are I-topologies on A. The I-bitopological space $\left(A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}\right)$ is a pairwise weakly Hausdorff space.

Theorem 3.20. Assume that $\alpha \neq 0, \beta \neq 0$ implies $\alpha * \beta \neq 0$. If an I-bitopological space $\left(A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}\right)$ is pairwise weakly Hausdorff, then $\Im_{N_{1}, M_{1}}$ and $\Im_{N_{2}, M_{2}}$ are T_{0}-topologies.

Proof. Let $x, y \in A$ with $x \neq y$. Since $\left(A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}\right)$ is pairwise weakly Hausdorff, there exists $\mu_{1} \in \Im_{N_{1}, M_{1}}$ and $\mu_{2} \in \Im_{N_{2}, M_{2}}$ such that $\mu_{1}(x)>0$, $\mu_{2}(y)>0$ and $\mu_{1} * \mu_{2}=1_{\phi}, \mu_{1} \diamond \mu_{2}=1_{X}$. Since $\mu_{1}(x)>0$ and $\mu_{2}(y)>0$, $\mu_{1}(y)=0$ and $\mu_{2}(x)=0$. Hence $\mu_{1}(x)>0, \mu_{1}(y)=0$ and $\mu_{2}(x)=0, \mu_{2}(y)>0$. That is $\Im_{N_{1}, M_{1}}$ and $\Im_{N_{2}, M_{2}}$ are T_{0}-topologies.

Theorem 3.21. Assume that $\alpha \neq 0, \beta \neq 0$ implies $\alpha * \beta \neq 0$. If an I-bitopological space $\left(A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}\right)$ is pairwise Hausdorff, then $\Im_{N_{1}, M_{1}}$ and $\Im_{N_{2}, M_{2}}$ are T_{1}-topologies.

Proof. Let $x, y \in A$ with $x \neq y$. Since $\left(A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}\right)$ is pairwise Hausdorff, $\exists \mu_{1} \in \Im_{N_{1}, M_{1}}$ and $\mu_{2} \in \Im_{N_{2}, M_{2}}$ such that $\mu_{1}(x)>0, \mu_{2}(y)>0$ and $\mu_{1} * \mu_{2}=1_{\phi}$, $\mu_{1} \diamond \mu_{2}=1_{X}$. Also there exists $\mu_{3} \in \Im_{N_{1}, M_{1}}$ and $\mu_{4} \in \Im_{N_{2}, M_{2}}$ such that $\mu_{3}(y)>0, \mu_{4}(x)>0$ and $\mu_{3} * \mu_{4}=1_{\phi}, \mu_{3} \diamond \mu_{4}=1_{X}$. Hence $\mu_{1}, \mu_{3} \in \Im_{N_{1}, M_{1}}$ with $\mu_{1}(x)>0, \mu_{1}(y)=0$ and $\mu_{3}(x)=0, \mu_{3}(y)>0$. Also $\mu_{2}, \mu_{4} \in \Im_{N_{2}, M_{2}}$ with $\mu_{2}(x)=0, \mu_{2}(y)>0$ and $\mu_{4}(x)>0, \mu_{4}(y)=0$. Therefore $\Im_{N_{1}, M_{1}}$ and $\Im_{N_{2}, M_{2}}$ are T_{1}-topologies.

Theorem 3.22. Assume that $\alpha \neq 0, \beta \neq 0$ implies $\alpha * \beta \neq 0$. If an I-bitopological space $\left(A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}\right)$ is pairwise Hausdorff, then $\Im_{N_{1}, M_{1}}$ or $\Im_{N_{2}, M_{2}}$ is a T_{2} topology.

Proof. Let $x, y \in A$ with $x \neq y$. Since $\left(A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}\right)$ is pairwise Hausdorff, $\exists \mu_{1} \in \Im_{N_{1}, M_{1}}$ and $\mu_{2} \in \Im_{N_{2}, M_{2}}$ such that $\mu_{1}(x)>0, \mu_{2}(y)>0$ and $\mu_{1} *$ $\mu_{2}=1_{\phi}, \mu_{1} \diamond \mu_{2}=1_{X}$. Also there exists $\mu_{3} \in \Im_{N_{1}, M_{1}}$ and $\mu_{4} \in \Im_{N_{2}, M_{2}}$ such that $\mu_{3}(y)>0, \mu_{4}(x)>0$ and $\mu_{3} * \mu_{4}=1_{\phi}, \mu_{3} \diamond \mu_{4}=1_{X}$. Since $\mu_{1}(x)>0$ and $\mu_{2}(y)>0, \mu_{1}(y)=0$ and $\mu_{2}(x)=0$. Similarly, $\mu_{4}(y)=0, \mu_{3}(x)=0$. Therefore we have $\left(\mu_{1} * \mu_{3}\right)(x)=0,\left(\mu_{1} * \mu_{3}\right)(y)=0$ and $\left(\mu_{2} * \mu_{4}\right)(x)=0$, $\left(\mu_{2} * \mu_{4}\right)(y)=0$. Also $\left(\mu_{1} \diamond \mu_{3}\right)(x)=1,\left(\mu_{1} \diamond \mu_{3}\right)(y)=1$ and $\left(\mu_{2} \diamond \mu_{4}\right)(x)=1$, $\left(\mu_{2} \diamond \mu_{4}\right)(y)=1$. Suppose there is a $z \neq x, y$ and $\left(\mu_{1} * \mu_{3}\right)(z) \neq 0$. Then $\mu_{1}(z) \neq 0, \mu_{3}(z) \neq 0$. Hence $\mu_{2}(z)=0$ and $\mu_{4}(z)=0$ and so we conclude that there exists $\mu_{5}, \mu_{6} \in \Im_{N_{1}, M_{1}}$ with $\mu_{5}(x)>0, \mu_{5}(y)=0$ and $\mu_{6}(y)>0, \mu_{6}(x)=0$. Therefore $\left(\mu_{5} * \mu_{6}\right)(x)=0,\left(\mu_{5} \diamond \mu_{6}\right)(y)=0$, so that $\mu_{5} * \mu_{6}=1_{\phi}$. Hence $\mu_{5} \diamond \mu_{6}=1_{X}$. Therefore $\Im_{N_{1}, M_{1}}$ is a T_{2}-topology.

Theorem 3.23. Assume that $\alpha \neq 0, \beta \neq 0$ implies $\alpha * \beta \neq 0$. If either $\Im_{N_{1}, M_{1}}$ or $\Im_{N_{2}, M_{2}}$ is a T_{2}-topology on A and the other is a T_{1}-topology on A, then $\left(A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}\right)$ is a pairwise weakly Hausdorff space.

Proof. Suppose $\Im_{N_{1}, M_{1}}$ is a T_{2}-topology on A and $\Im_{N_{2}, M_{2}}$ is a T_{1}-topology on A. Let $x, y \in A$ with $x \neq y$. Then there exists $\mu_{1}, \mu_{2} \in \Im_{N_{1}, M_{1}}$ such that $\mu_{1}(x)>0, \mu_{2}(y)>0$ and $\mu_{1} * \mu_{2}=1_{\phi}, \mu_{1} \diamond \mu_{2}=1_{X}$. Also there exists $\mu_{3}, \mu_{4} \in \Im_{N_{2}, M_{2}}$ such that $\mu_{3}(x)>0, \mu_{3}(y)=0$ and $\mu_{4}(x)=0, \mu_{4}(y)>0$. Hence $\mu_{1}(x)>0, \mu_{4}(y)>0$ and $\mu_{3}(x)>0, \mu_{2}(y)>0$. Therefore we have $\left(\mu_{1} * \mu_{4}\right)(x)=0,\left(\mu_{1} * \mu_{4}\right)(y)=0$ and $\left(\mu_{3} * \mu_{2}\right)(x)=0,\left(\mu_{3} * \mu_{2}\right)(y)=0$. Also $\left(\mu_{1} \diamond \mu_{4}\right)(x)=1,\left(\mu_{1} \diamond \mu_{4}\right)(y)=1$ and $\left(\mu_{3} \diamond \mu_{2}\right)(x)=1,\left(\mu_{3} \diamond \mu_{2}\right)(y)=1$. Let $z \neq x, y$ with $\left(\mu_{1} * \mu_{4}\right)(z) \neq 0$. Then $\mu_{1}(z) \neq 0, \mu_{4}(z) \neq 0$. Hence $\mu_{2}(z)=0$ and so $\left(\mu_{3} * \mu_{2}\right)(z)=0$. Therefore we can find $\mu_{5} \in \Im_{N_{1}, M_{1}}$ and $\mu_{6} \in \Im_{N_{2}, M_{2}}$ with $\mu_{5}(x)>0, \mu_{6}(y)>0$ such that $\mu_{5} * \mu_{6}=1_{\phi}, \mu_{5} \diamond \mu_{6}=1_{X}$ as proved earlier or $\mu_{1} * \mu_{4}=1_{\phi}, \mu_{1} \diamond \mu_{4}=1_{X}$ and $\left(A, \Im_{N_{1}, M_{1}}, \Im_{N_{2}, M_{2}}\right)$ is pairwise weakly Hausdorff.

4 Intuitionistic fuzzy quasi pseudo n-normed linear spaces

Definition 4.1. Let X be any vector space, $*$ be a continuous t-norm and \diamond a continuous t-co-norm. Then the functions $P, Q: X^{n} \times(0, \infty) \rightarrow[0,1]$ satisfying the following conditions
(1) $P(0, t)+Q(0, t)=1$ where $0=(0,0, \ldots, 0)$
(2) $P\left(x_{1}, x_{2}, \ldots, x_{n}-x_{n}^{\prime}, t+s\right) \geq P\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) * P\left(x_{1}, x_{2}, \ldots, x_{n}^{\prime}, s\right)$
(3) $P\left(x_{1}, x_{2}, \ldots, x_{n}, \cdot\right):(0, \infty) \rightarrow[0,1]$ is left continuous
(4) $P\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \rightarrow 1$ as $t \rightarrow \infty$
(5) $Q\left(x_{1}, x_{2}, \ldots, x_{n}-x_{n}^{\prime}, t+s\right) \leq Q\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \diamond Q\left(x_{1}, x_{2}, \ldots, x_{n}^{\prime}, s\right)$
(6) $Q\left(x_{1}, x_{2}, \ldots, x_{n}, \cdot\right):(0, \infty) \rightarrow[0,1]$ is left continuous
(7) $Q\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \rightarrow 0$ as $t \rightarrow \infty$
for all $x_{1}, x_{2}, \ldots, x_{n}, x_{n}^{\prime} \in X, t, s \in(0, \infty)$ is called an intuitionistic fuzzy quasi pseudo n-norm on X and $(X, P, Q, *, \diamond)$ is called an intuitionistic fuzzy quasi pseudo n-normed linear space or in short i-f-q-p- n-NLS.

Example 4.2. Let X be any real vector space, $a * b=\min \{a, b\}, a \diamond b=\max \{a, b\}$. Define

$$
P\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)= \begin{cases}0 & \text { if }\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq 0 \text { and } t \in(0,1] \\ 1-\frac{1}{t} & \text { if }\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq 0 \text { and } t \in(1, \infty) \\ 1 & \text { if }\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \text { and } t \in(0, \infty)\end{cases}
$$

and

$$
Q\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)= \begin{cases}1 & \text { if }\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq 0 \text { and } t \in(0,1] \\ \frac{1}{t} & \text { if }\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq 0 \text { and } t \in(1, \infty) \\ 0 & \text { if }\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \text { and } t \in(0, \infty)\end{cases}
$$

(i) Clearly $P(0, t)+Q(0, t)=1$.
(ii) Since $\frac{1}{t+s}<\frac{1}{t}$ and $\frac{1}{t+s}<\frac{1}{s}, 1-\frac{1}{t+s} \geq 1-\frac{1}{t} * 1-\frac{1}{s}$ for all $t, s>0$.

Hence $P\left(x_{1}, x_{2}, \ldots, x_{n}-x_{n}^{\prime}, t+s\right) \geq P\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) * Q\left(x_{1}, x_{2}, \ldots, x_{n}^{\prime}, s\right)$.
(iii) $P\left(x_{1}, x_{2}, \ldots, x_{n}, \cdot\right):(0, \infty) \rightarrow[0,1]$ is left continuous.
(iv) $P\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \rightarrow 1$ as $t \rightarrow \infty$.
(v) Since $\frac{1}{t+s} \leq \frac{1}{t} \diamond \frac{1}{s}$,

$$
Q\left(x_{1}, x_{2}, \ldots, x_{n}-x_{n}^{\prime}, t+s\right) \leq Q\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \diamond Q\left(x_{1}, x_{2}, \ldots, x_{n}^{\prime}, s\right)
$$

(vi) $Q\left(x_{1}, x_{2}, \ldots, x_{n}, \cdot\right):(0, \infty) \rightarrow[0,1]$ is left continuous.
(vii) $Q\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \rightarrow 0$ as $t \rightarrow \infty$.

Hence $(X, P, Q, *, \diamond)$ is an i-f-q-p- n-NLS. Also $P\left(\left(x_{1} / 5, x_{2}, \ldots, x_{n}\right), 4 / 5\right)=0$ and $P\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),(4 / 5) /|1 / 5|\right)=3 / 4$. Therefore $P\left(k x_{1}, x_{2}, \ldots, x_{n}, t\right) \neq$ $P\left(x_{1}, x_{2}, \ldots, x_{n}, t /|k|\right)$ for $t=4 / 5$ and $k=1 / 5$. Hence $(X, P, Q, *, \diamond)$ is not an i-f- n-NLS.

Definition 4.3. An i-f-q-p- n-norm P, Q is said to be an intuitionistic fuzzy quasi n-norm if $P\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=1$ and $Q\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=0, \forall t$ implies $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(0,0, \ldots, 0)$.

Definition 4.4. An i-f-q-p-n-norm P, Q is said to be an intuitionistic fuzzy pseudo n-norm if $P\left(x_{1}, x_{2}, \ldots, k x_{n}, t\right)=P\left(x_{1}, x_{2}, \ldots, x_{n}, \frac{t}{|k|}\right)$ and $Q\left(x_{1}, x_{2}, \ldots\right.$, $\left.k x_{n}, t\right)=Q\left(x_{1}, x_{2}, \ldots, x_{n}, \frac{t}{|k|}\right)$ for all scalar k and $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$.

Remark 4.5. $P(0,0, \ldots, k 0, t)=P\left(0,0, \ldots, 0, \frac{t}{|k|}\right)=1$ and $Q(0,0, \ldots, k 0, t)=$ $Q\left(0,0, \ldots, 0, \frac{t}{|k|}\right)=0$, i.e., $P(0, s)=1$ and $Q(0, s)=0$ where s is positive.

Proposition 4.6. Let P, Q be $i-f-q-p-n$-norm on X and suppose

$$
\begin{aligned}
& P_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=P\left(x_{1}, x_{2}, \ldots,-x_{n}, t\right), \\
& Q_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=Q\left(x_{1}, x_{2}, \ldots,-x_{n}, t\right)
\end{aligned}
$$

where $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$. Then P_{1}, Q_{1} is also an $i-f-q-p-n$-norm on X.
Proof. (i) $P_{1}(0, t)=P(0, t)=1$ and $Q_{1}(0, t)=Q(0, t)=0$ where $0=$ $(0,0, \ldots, 0)$.
(ii) $P_{1}\left(x_{1}, x_{2}, \ldots, x_{n}-x_{n}^{\prime}, t+s\right)$

$$
\begin{aligned}
& =P\left(x_{1}, x_{2}, \ldots, x_{n}^{\prime}-x_{n}, t+s\right) \\
& =P\left(x_{1}, x_{2}, \ldots,-x_{n}-\left(-x_{n}^{\prime}\right), t+s\right) \\
& \geq P\left(x_{1}, x_{2}, \ldots,-x_{n}, t\right) * P\left(x_{1}, x_{2}, \ldots,-x_{n}^{\prime}, s\right) \\
& \geq P_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) * P_{1}\left(x_{1}, x_{2}, \ldots, x_{n}^{\prime}, s\right)
\end{aligned}
$$

Similarly, $Q_{1}\left(x_{1}, x_{2}, \ldots, x_{n}-x_{n}^{\prime}, t+s\right)$

$$
\leq Q\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \diamond Q\left(x_{1}, x_{2}, \ldots, x_{n}^{\prime}, s\right)
$$

(iii) Since $P\left(x_{1}, x_{2}, \ldots, x_{n}, \cdot\right), Q\left(x_{1}, x_{2}, \ldots, x_{n}, \cdot\right):(0, \infty) \rightarrow[0,1]$ is left continuous, $P_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, \cdot\right)$ and $Q_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, \cdot\right):(0, \infty) \rightarrow[0,1]$ is also left continuous.
(iv) Also $P_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \rightarrow 1$ and $Q_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \rightarrow 0$ as $t \rightarrow \infty$. Therefore P_{1}, Q_{1} is also an i-f-q-p- n-norm on X.

Remark 4.7. P_{1}, Q_{1} defined by $P_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=P\left(x_{1}, x_{2}, \ldots,-x_{n}, t\right)$, $Q_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=Q\left(x_{1}, x_{2}, \ldots,-x_{n}, t\right)$ are called conjugate i - $f-q$ - p - n-norm of P, Q. If P, Q is an intuitionistic fuzzy pseudo n-norm, then $P=P_{1}$ and $Q=Q_{1}$. Again if P, Q is an intuitionistic fuzzy quasi n-norm, then so is P_{1}, Q_{1}. Hereafter we denote the conjugate i-f-q-p-n-norm of P, Q by $-P,-Q$.

Definition 4.8. A function ' $:[0,1] \rightarrow[0,1]$ is said to be an order reverting involution on $[0,1]$ if it satisfies the following conditions
(i) $\alpha \leq \beta \Rightarrow \beta^{\prime} \leq \alpha^{\prime}$
(ii) $\alpha^{\prime \prime}=\alpha$ for $\alpha, \beta \in[0,1]$.

Definition 4.9. Let A be an i-f- n-NLS along with an order reverting involution ' on I and $\alpha \in(0,1], \epsilon>0$ and $x \in A$. The fuzzy set $\mathbf{N}_{\alpha}^{\prime}(x, \epsilon) \in I^{X}$ is defined as

$$
\mathbf{N}_{\alpha}^{\prime}(x, \epsilon)(y)= \begin{cases}\alpha & \text { if } N(x-y, \epsilon)>\alpha^{\prime} \text { and } M(x-y, \epsilon)<1-\alpha^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

where $y \in A$ is called the α-open sphere in an i - f - n-NLS with an order reverting involution' on I and centre x.

Definition 4.10. Let A be an i-f- n-NLS with an order reverting involution ${ }^{\prime}$ on I. A fuzzy set $\mu \in I^{X}$ is said to be open if $\mu(x)>0$ implies there exists $\epsilon>0$ and $\alpha \in(0,1]$ such that $\mathbf{N}_{\alpha}^{\prime}(x, \epsilon) \subseteq \mu$.

Note 4.11. For the rest of the paper we consider only t-norms for which $\alpha \neq 0$, $\beta \neq 0$ implies $\alpha * \beta \neq 0$.

Theorem 4.12. Let A be an $i-f-n-N L S$ with an order reverting involution ' on I. Then $\Im_{N^{\prime}, M^{\prime}}=\left\{\mu \in I^{X}: \mu\right.$ is open $\}$ is an I-topology on A.

Proof. Proof of this Theorem is obvious.

Theorem 4.12 implies that an i-f- n-norm generates an I-topology. The i-f-q-$\mathrm{p}-n$-norm is a weak form of an i-f- n-norm, but still it generates an I-topology as shown by the following.

Theorem 4.13. Let $(X, P, Q, *, \diamond)$ be an $i-f-q-p-n-N L S$ along with an order reverting involution' on I. Then the collection $\Im_{P, Q}=\left\{\mu \in I^{X}: \mu\right.$ is open $\}$ is an I-topology on $(X, P, Q, *, \diamond)$.

Proof. (i) Clearly $1_{X}, 1_{\phi} \in \Im_{P, Q}$.
(ii) Let $\mu_{1}, \mu_{2} \in \Im_{P, Q}$ and suppose there exists an element x such that $\left(\mu_{1} *\right.$ $\left.\mu_{2}\right)(x)>0$. Then $\mu_{1}(x)>0$ and $\mu_{2}(x)>0$, where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ X^{n}, i.e., there are $\alpha_{1}, \alpha_{2} \in(0,1]$ and $\epsilon_{1}, \epsilon_{2}>0 \ni \mathbf{N}_{\alpha_{1}}^{\prime}\left(x, \epsilon_{1}\right) \subseteq \mu_{1}$ and $\mathbf{N}_{\alpha_{2}}^{\prime}\left(x, \epsilon_{2}\right) \subseteq \mu_{2}$. Consider $\alpha=\alpha_{1} * \alpha_{2}$ and $\epsilon=\min \left\{\epsilon_{1}, \epsilon_{2}\right\}$.
Since $\alpha^{\prime} \geq \alpha_{1}^{\prime}, P\left(x_{1}, x_{2}, \ldots, x_{n}, \epsilon\right)>\alpha^{\prime}$ and $Q\left(x_{1}, x_{2}, \ldots, x_{n}, \epsilon\right)<1-\alpha^{\prime}$

$$
\Rightarrow P\left(x_{1}, x_{2}, \ldots, x_{n}, \epsilon\right)>\alpha_{1}^{\prime} \text { and } Q\left(x_{1}, x_{2}, \ldots, x_{n}, \epsilon\right)<1-\alpha_{1}^{\prime} .
$$

Since $\epsilon \leq \epsilon_{1}, P\left(x_{1}, x_{2}, \ldots, x_{n}, \epsilon_{1}\right)>\alpha_{1}^{\prime}$ and $Q\left(x_{1}, x_{2}, \ldots, x_{n}, \epsilon_{1}\right)<1-\alpha_{1}^{\prime}$ and hence $\mathbf{N}_{\alpha}^{\prime}(x, \epsilon) \subseteq \mathbf{N}_{\alpha_{1}}^{\prime}\left(x, \epsilon_{1}\right) \subseteq \mu_{1}$ and $\mathbf{N}_{\alpha}^{\prime}(x, \epsilon) \subseteq \mathbf{N}_{\alpha_{2}}^{\prime}\left(x, \epsilon_{2}\right) \subseteq \mu_{2}$, which implies that $\mathbf{N}_{\beta}^{\prime}(x, \epsilon) \subseteq \mathbf{N}_{\alpha}^{\prime}(x, \epsilon) * \mathbf{N}_{\alpha}^{\prime}(x, \epsilon) \subseteq \mu_{1} * \mu_{2}$ where $\beta=\alpha * \alpha$. Hence $\mu_{1}, \mu_{2} \in \Im_{P, Q}$ implies $\mu_{1} * \mu_{2} \in \Im_{P, Q}$.
(iii) Let $\left\{\mu_{i}\right\}$ be any collection of members of $\Im_{P, Q}$. If $\vee \mu_{i}(x)>0$, then $\mu_{j}(x)>0$ for some j. Hence $\exists \alpha \in(0,1]$ and $\epsilon>0 \ni \mathbf{N}_{\alpha}^{\prime}(x, \epsilon) \subseteq \mu_{j} \subseteq \vee \mu_{i}$. Thus $\Im_{P, Q}$ is an I-topology on $(X, P, Q, *, \diamond)$.

Proposition 4.14. Let $(X, P, Q, *, \diamond)$ be an $i-f-q-p-n-N L S$ along with an order reverting involution ' on I. The fuzzy set μ in I^{X} is open if and only if μ is the union of open sets in I^{X}.

Proof. Let $\mu \in \Im_{P, Q}$ and $\mu(x)>0$. Then there exists $\alpha \in(0,1], \epsilon>0$ and $x \in A \ni \mathbf{N}_{\alpha}^{\prime}(x, \epsilon) \subseteq \mu$. Consider $\mathbf{N}_{\alpha}^{\circ}(x, \epsilon)$ defined by

$$
\mathbf{N}_{\alpha}^{\circ}(x, \epsilon)(y)= \begin{cases}\mu(x) & \text { if } P(x-y, \epsilon)>\alpha^{\prime} \text { and } Q(x-y, \epsilon)<1-\alpha^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

where $y \in A$. Then clearly $\mu=\vee \mathbf{N}_{\alpha}^{\circ}(x, \epsilon)$ and each $\mathbf{N}_{\alpha}^{\circ}(x, \epsilon)$ is an open set.

Theorem 4.15. Let $(X, P, Q, *, \diamond)$ be an $i-f-q-p-n-N L S$ along with an order reverting involution' on I. Then P, Q is an intuitionistic fuzzy quasi n-norm on A if and only if $\left(A, \Im_{P, Q}\right)$ is a T_{1}-space.

Proof. If P, Q is an intuitionistic fuzzy quasi n-norm on A, then for all $x, y \in A$ with $x \neq y$, we have $P(x-y, t)=r$ and $Q(x-y, t)=1-r$ for some $0<r<1$ and for some $t>0$. Now it is possible to choose one s such that $s^{\prime}>r$. Consider the s-open spheres $\mu_{1}=\mathbf{N}_{s}^{\prime}\left(x, \frac{t}{2}\right)$ and $\mu_{2}=\mathbf{N}_{s}^{\prime}\left(y, \frac{t}{2}\right)$. We claim that $\mathbf{N}_{s}^{\prime}\left(x, \frac{t}{2}\right)(y)=0$ and $\mathbf{N}_{s}^{\prime}\left(y, \frac{t}{2}\right)(x)=0$. If not $P\left(x-y, \frac{t}{2}\right)>s^{\prime}$ and $Q\left(x-y, \frac{t}{2}\right)<1-s^{\prime}$, i.e.,

$$
\begin{aligned}
P(x-y, t) & =P((x-y)+0, t) \\
& \geq P\left(x-y, \frac{t}{2}\right) * P\left(0, \frac{t}{2}\right) \\
& >s^{\prime}>r \text { and } \\
Q(x-y, t) & \leq Q\left(x-y, \frac{t}{2}\right) \diamond Q\left(0, \frac{t}{2}\right) \\
& <1-s^{\prime}<1-r \text { which is a contradiction. }
\end{aligned}
$$

Also $\mu_{1}(x)=s$ and $\mu_{2}(y)=s>0$. Hence $\left(A, \Im_{P, Q}\right)$ is a T_{1}-space.
Conversely, suppose $\left(A, \Im_{P, Q}\right)$ is a T_{1}-space. Take $x, y \in A$ with $x \neq y$. Then there exists $\mu_{1}, \mu_{2} \in \Im_{P, Q}$ such that $\mu_{1}(x)>0, \mu_{1}(y)=0$ and $\mu_{2}(y)>0$, $\mu_{2}(x)=0$. Hence $\exists s_{1}, s_{2} \in(0,1]$ and $t_{1}, t_{2}>0 \ni \mathbf{N}_{s_{1}}^{\prime}\left(x, t_{1}\right) \subseteq \mu_{1}$ and $\mathbf{N}_{s_{2}}^{\prime}\left(y, t_{2}\right)$ $\subseteq \mu_{2}$. Now since $\mu_{1}(y)=0, P\left(x-y, t_{1}\right) \leq s_{1}$ and $Q\left(x-y, t_{1}\right) \geq 1-s_{1}$. Similarly $P\left(y-x, t_{2}\right) \leq s_{2}$ and $Q\left(y-x, t_{2}\right) \geq 1-s_{2}$. Hence $P(x-y, t) \neq 1$ and $Q(x-y, t) \neq 0$. This means that, suppose $x \neq 0$, then there is a $t>0$ such that $P(x-0, t) \neq 1$ and $Q(x-0, t) \neq 0$ where $0=(0,0, \ldots, 0)$. Hence $P(x, t)=1$ and $Q(x, t)=0$ if and only if $x=0$.

Theorem 4.16. Let $\left(A, \Im_{P, Q}, \Im_{-P,-Q}\right)$ be an I-bitopological space generated by the conjugate pairs of i-f-q-p-n-norms P, Q and $-P,-Q$ along with an order reverting involution ' on I. If P, Q is an intuitionistic fuzzy quasi n-norm, then $\left(A, \Im_{P, Q}, \Im_{-P,-Q}\right)$ is a pairwise Hausdorff space.

Proof. Since P, Q is an intuitionistic fuzzy quasi n-norm, $-P,-Q$ is also an intuitionistic fuzzy quasi n-norm. Hence $\Im_{P, Q}, \Im_{-P,-Q}$ are T_{1}-spaces. Let $x, y \in A$ with $x \neq y$. Since $\Im_{P, Q}$ is a T_{1}-space, there exists $\mu_{1}, \mu_{2} \in \Im_{P, Q} \ni \mu_{1}(x)>0$, $\mu_{1}(y)=0$ and $\mu_{2}(y)>0, \mu_{2}(x)=0$. Similarly $\exists \mu_{3}, \mu_{4} \in \Im_{-P,-Q}$ such that $\mu_{3}(x)>0, \mu_{3}(y)=0$ and $\mu_{4}(x)=0, \mu_{4}(y)>0$. Now $\exists \alpha_{1}, \alpha_{2} \in(0,1]$ and
$\epsilon_{1}, \epsilon_{2}>0 \ni \mathbf{N}_{\alpha_{1}}^{\prime}\left(x, \epsilon_{1}\right) \subseteq \mu_{1}$ and $\mathbf{N}_{\alpha_{2}}^{\prime}\left(x, \epsilon_{2}\right) \subseteq \mu_{3}$. Since $\mathbf{N}_{\alpha_{1}}^{\prime}\left(x, \epsilon_{1}\right)(y)=$ $0, P\left(x-y, \epsilon_{1}\right) \leq \alpha_{1}^{\prime}$ and $Q\left(x-y, \epsilon_{1}\right) \geq 1-\alpha_{1}^{\prime}$.

Similarly $-P\left(x-y, \epsilon_{2}\right) \leq \alpha_{2}^{\prime}$ and $-Q\left(x-y, \epsilon_{2}\right) \geq 1-\alpha_{2}^{\prime}$. Let $\alpha=\alpha_{1} * \alpha_{2}$ and $\epsilon=\min \left\{\epsilon_{1}, \epsilon_{2}\right\}$. Now it is possible to choose one $0<s<1$ such that $s^{\prime} * s^{\prime}>\alpha^{\prime}$. Consider the s-open spheres $\mathbf{N}_{s}^{\prime}\left(x, \frac{\epsilon}{2}\right)$ in $\Im_{P, Q}$ and $\mathbf{N}_{s}^{\prime}\left(y, \frac{\epsilon}{2}\right)$ in $\Im_{-P,-Q}$. Then it is enough to prove $\mathbf{N}_{s}^{\prime}\left(x, \frac{\epsilon}{2}\right) * \mathbf{N}_{s}^{\prime}\left(y, \frac{\epsilon}{2}\right)=1_{\phi}$.

Suppose $\mathbf{N}_{s}^{\prime}\left(x, \frac{\epsilon}{2}\right) * \mathbf{N}_{s}^{\prime}\left(y, \frac{\epsilon}{2}\right)(z)>0$ for some $z \in A$, then $\mathbf{N}_{s}^{\prime}\left(x, \frac{\epsilon}{2}\right)(z)>0$ and $\mathbf{N}_{s}^{\prime}\left(y, \frac{\epsilon}{2}\right)(z)>0$. Hence $P\left(x-z, \frac{\epsilon}{2}\right)>s^{\prime}, Q\left(x-z, \frac{\epsilon}{2}\right)<1-s^{\prime}$ and $-P\left(y-z, \frac{\epsilon}{2}\right)>$ $s^{\prime},-Q\left(y-z, \frac{\epsilon}{2}\right)<1-s^{\prime}$. Also it is possible to choose δ such that $0<\delta<\frac{\epsilon}{2}$ and $P(x-z, \delta)>s^{\prime}, Q(x-z, \delta)<1-s^{\prime}$. Now

$$
\begin{aligned}
-P\left(x-y, \frac{\epsilon}{2}\right) & \geq-P(x-y, \epsilon) \\
& \geq-P((x-z)-(y-z), \epsilon) \\
& \geq-P\left(x-z, \frac{\epsilon}{2}\right) *-P\left(y-z, \frac{\epsilon}{2}\right) \\
& \geq P\left(z-x, \frac{\epsilon}{2}\right) *-P\left(y-z, \frac{\epsilon}{2}\right) \\
& \geq P\left(0-(x-z), \delta+\left(\frac{\epsilon}{2}-\delta\right)\right) *-P\left(y-z, \frac{\epsilon}{2}\right) \\
& \geq P\left(0, \frac{\epsilon}{2}-\delta\right) * P(x-z, \delta) *\left(-P\left(y-z, \frac{\epsilon}{2}\right)\right) \\
& =1 * P(x-z, \delta) *\left(-P\left(y-z, \frac{\epsilon}{2}\right)\right) \\
& =P(x-z, \delta) *\left(-P\left(y-z, \frac{\epsilon}{2}\right)\right) \\
& >s^{\prime} * s^{\prime}>\alpha^{\prime} .
\end{aligned}
$$

Hence $-P\left(x-y, \frac{\epsilon}{2}\right)>\alpha^{\prime}$. Therefore $-P\left(x-y, \frac{\epsilon}{2}\right)>\alpha_{2}^{\prime}$. Similarly $-Q\left(x-y, \frac{\epsilon}{2}\right)<$ $1-\alpha_{2}^{\prime}$, which is a contradiction.

Similarly there is a s-open sphere $\mathbf{N}_{s}^{\prime}\left(y, \frac{\epsilon}{2}\right)$ in $\Im_{P, Q}$ and $\mathbf{N}_{s}^{\prime}\left(x, \frac{\epsilon}{2}\right)$ in $\Im_{-P,-Q}$ such that $\mathbf{N}_{s}^{\prime}\left(y, \frac{\epsilon}{2}\right) * \mathbf{N}_{s}^{\prime}\left(x, \frac{\epsilon}{2}\right)=0$.

Theorem 4.17. Let $(X, P, Q, *, \diamond)$ be an i-f-q-p-n-NLS along with an order inverting involution ' on I. Then $\left(A, \Im_{P, Q}\right)$ is a T_{2}-space if and only if P, Q is an intuitionistic fuzzy quasi n-norm on A.

Proof. Suppose P, Q is an intuitionistic fuzzy quasi n-norm on A. If $x, y \in A$ with $x \neq y$, then $P(x-y, t) \neq 1$ and $Q(x-y, t) \neq 0$ for some t. Suppose $P(x-y, t)=r$ and $Q(x-y, t)=1-r$ where $0<r<1$. Now choose $s>0$ such that $s^{\prime} * s^{\prime}>r$. Then $\mathbf{N}_{s}^{\prime}\left(x, \frac{t}{2}\right) * \mathbf{N}_{s}^{\prime}\left(y, \frac{t}{2}\right)=1_{\phi}$. Hence $\left(A, \Im_{P, Q}\right)$ is a T_{2}-space.

Conversely, suppose that $\left(A, \Im_{P, Q}\right)$ is a T_{2}-space. Let $x \neq y$ in A. Then there exists $\Im_{P, Q}$ open sets μ_{1}, μ_{2} such that $\mu_{1}(x)>0, \mu_{2}(y)>0$ with $\mu_{1} * \mu_{2}=$ $1_{\phi}, \mu_{1} \diamond \mu_{2}=1_{X}$. Since $\mu_{1}(x)>0, \mu_{2}(x)=0$ and $\mu_{2}(y)>0, \mu_{1}(y)=0$. Hence $\left(A, \Im_{P, Q}\right)$ is a T_{1}-space and so by Theorem $4.15 P, Q$ is an intuitionistic fuzzy quasi n-norm on A.

Note 4.18. In general a T_{2}-space need not be a T_{1}-space. However if P, Q is an intuitionistic fuzzy quasi n-norm, then $\left(A, \Im_{P, Q}\right)$ is a T_{2}-space as well as a T_{1}-space.

Theorem 4.19. Let $(X, P, Q, *, \diamond)$ be an $i-f-q-p-n-N L S$ along with an order inverting involution' on I. The $i-f-q-p-n$-norm P, Q is an intuitionistic fuzzy quasi n-norm if and only if the I-bitopological space $\left(A, \Im_{P, Q}, \Im_{-P,-Q}\right)$ is pairwise Hausdorff.

Proof. Suppose $\left(A, \Im_{P, Q}, \Im_{-P,-Q}\right)$ is a pairwise Hausdorff space. Then $\Im_{P, Q}$ and $\Im_{-P,-Q}$ are T_{1}-topologies. Hence P, Q and $-P,-Q$ are intuitionistic fuzzy quasi n-norms on A.

Conversely, suppose P, Q is an intuitionistic fuzzy quasi n-norm, then by Theorem 4.16, the I-bitopological space $\left(A, \Im_{P, Q}, \Im_{-P,-Q}\right)$ is pairwise Hausdorff.

Theorem 4.20. If P, Q and $-P,-Q$ are two $i-f-q-p-n$-norms on A, then the I-bitopological space $\left(A, \Im_{P, Q}, \Im_{-P,-Q}\right)$ is pairwise weakly Hausdorff if and only if P, Q and $-P,-Q$ are intuitionistic fuzzy quasi n-norms.

Proof. Suppose $\left(A, \Im_{P, Q}, \Im_{-P,-Q}\right)$ is pairwise weakly Hausdorff space, then $\Im_{P, Q}$ and $\Im_{-P,-Q}$ are T_{1}-topologies. Hence P, Q and $-P,-Q$ are intuitionistic fuzzy quasi n-norms on A.

Conversely, suppose P, Q and $-P,-Q$ are intuitionistic fuzzy quasi n-norms on A, then $\Im_{P, Q}$ and $\Im_{-P,-Q}$ are T_{2}-topologies. Let x and y be two distinct points in A. Then $\exists \mu_{1}(x)>0$ and $\mu_{2}(y)>0$ such that $\mu_{1} * \mu_{2}=1_{\phi}$ and $\exists \mu_{3}$ and μ_{4} in $\Im_{P_{1}, Q_{1}}$ with $\mu_{3}(x)>0$ and $\mu_{4}(y)>0$ such that $\mu_{3} * \mu_{4}=1_{\phi}$. It is enough if we show that $\mu_{1} * \mu_{4}=1_{\phi}$ or $\mu_{2} * \mu_{3}=1_{\phi}$. Clearly $\left(\mu_{1} * \mu_{4}\right)(x)=0$, $\left(\mu_{1} * \mu_{4}\right)(y)=0,\left(\mu_{2} * \mu_{3}\right)(x)=0,\left(\mu_{2} * \mu_{3}\right)(y)=0$. Suppose there exists an element $z \in A$ such that $\left(\mu_{1} * \mu_{4}\right)(z) \neq 0$. Then $\mu_{1}(z)>0$ and $\mu_{4}(z)>0$ and so $\mu_{2}(z)=0, \mu_{3}(z)=0$ and hence we conclude that $\mu_{1} * \mu_{4}=1_{\phi}$ or $\mu_{2} * \mu_{3}=1_{\phi}$.

Note 4.21. In general, a pairwise weakly Hausdorff space need not be a pairwise Hausdorff space. However if P, Q is an intuitionistic fuzzy quasi n-norm, then
$\left(A, \Im_{P, Q}, \Im_{-P,-Q}\right)$ is a pairwise weakly Hausdorff as well as a pairwise Hausdorff space as proved in the following.

Theorem 4.22. $\left(A, \Im_{P, Q}, \Im_{-P,-Q}\right)$ is a pairwise weakly Hausdorff space if and only if $\left(A, \Im_{P, Q}, \Im_{-P,-Q}\right)$ is a pairwise Hausdorff space.

Proof. Suppose $\left(A, \Im_{P, Q}, \Im_{-P,-Q}\right)$ is a pairwise weakly Hausdorff space, then $\Im_{P, Q}$ or $\Im_{-P,-Q}$ is a T_{2}-space. Hence by Theorem 4.17, P, Q is an intuitionistic fuzzy quasi n-norm and so by Theorem $4.19\left(A, \Im_{P, Q}, \Im_{-P,-Q}\right)$ is a pairwise Hausdorff space.

Conversely, suppose $\left(A, \Im_{P, Q}, \Im_{-P,-Q}\right)$ is a pairwise Hausdorff space, then trivially it is a pairwise weakly Hausdorff space.

Acknowledgements: The authors are thankful to the reviewers for their critical comments and suggestions, which have greatly helped in improving the quality of the paper.

References

[1] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11(3)(2003), 687-705.
[2] _ Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151(2005), 513-547.
[3] _ Product fuzzy normed linear spaces, J. Fuzzy Math., 13(3)(2005), 545-565.
[4] S.C. Chang and J.N. Mordesen, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Cal. Math. Soc., 86(1994), 429-436.
[5] N.R. Das, Pankajadas, Fuzzy topology generated by fuzzy norm, Fuzzy Sets and Systems, 107(1999), 349-354.
[6] C. Felbin, The Completion of fuzzy normed linear space, J. Math. Anal. and Appl., 174(2)(1993), 428-440.
[7] _ Finite dimensional fuzzy normed linear spaces II, Journal of Analysis, 7(1999), 117-131.
[8] S.Gähler, Lineare 2-Normierte Räume, Math. Nachr., 28(1965), 1-43.
[9] _ Unter Suchungen \ddot{U} ber Veralla gemeinerte m-metrische Räume I, Math. Nachr., (1969), 165-189.
[10] A. George and P. Veeramani, On some results in fuzzy vector space, Fuzzy Sets and Systems, 64(1994), 395-399.
[11] H. Gunawan and M. Mashadi, On n-Normed spaces, Int. J. Math. \& Math. Sci., 27(10)(2001), 631-639.
[12] A.K. Katsaras and D.B. Liu, Fuzzy vector spaces and fuzzy topological spaces, J. Math. Anal. and Appl., 58(1977), 135-156.
[13] S.S. Kim and Y.J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math., 29(4)(1996), 739-744.
[14] O. Kramosil and J. Michalak, Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 326-334.
[15] R. Malceski, Strong n-convex n-normed spaces, Mat. Bilten, 21(1997), 81102.
[16] AL. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear space, Int. J. Math. \mathcal{E} Math. Sci., 24(2005), 3963-3977.
[17] AL. Narayanan, S. Vijayabalaji and N. Thillaigovindan, Intuitionistic fuzzy bounded linear operators, Iranian J. Fuzzy Systems, 4(1)(2007), 89-101.
[18] B. Schwcizer and A. Sklar , Statistical metric spaces, Pacific J. Maths., 10(1960), 314-334.
[19] T. Tamizh Chelvam and A. Singadurai, I-Topological Vector Spaces Generated by F-norm, J. Fuzzy Math., 14(2)(2006), 255-265.
[20] T. Tamizh Chelvam and A. Singadurai, I-bitopological Space Generated by Fuzzy norm, J. Fuzzy Math., 16(2)(2008), 483-494.
N. Thillaigovindan

Department of Mathematics,

Annamalai University,
Annamalainagar-608002, Tamilnadu, India
Email: thillai_n@sify.com

Iqbal Jebril
Department of Mathematics,
Faculty of Science,
King Faisal Universty,
P.O.Box 2600- Hufuf, Hasa 31982, Saudi Arabia

Email: iqbal501 hotmail.com
S. Anita Shanthi

Department of Mathematics,
Annamalai University,
Annamalainagar-608002, Tamilnadu, India
Email: shanthi.anita@yahoo.com

[^0]: *Corresponding author

