

I-Bitopological Spaces Generated by Intuitionistic Fuzzy *n*-Norms

N. Thillaigovindan, Iqbal Jebril * and S. Anita Shanthi

Received 16 May 2010 Revised 9 February 2011 Accepted 23 February 2011

Abstract: In this paper we define *I*-bitopological space $(A, \mathfrak{F}_{P,Q}, \mathfrak{F}_{-P,-Q})$ where $\mathfrak{F}_{P,Q}$ and $\mathfrak{F}_{-P,-Q}$ are *I*-topologies generated by the intuitionistic fuzzy quasi pseudo *n*-norms *P*,*Q* and -P, -Q. Further a charcterization of pairwise Hausdorff *I*-bitopological space is also established.

Keywords: Intuitionistic fuzzy n-norms, intuitionistic fuzzy quasi pseudo n-norm, pairwise Hausdorff I-bitopological space

2000 Mathematics Subject Classification: 54A40, 46S40, 03E72

1 Introduction

Motivated by the theory of *n*-normed linear space [8, 9, 11, 13, 15] and fuzzy normed linear space [1, 2, 3, 4, 5, 6, 7, 10, 12, 14] the notions of fuzzy *n*-normed linear space [16] and intuitionistic fuzzy *n*-normed linear space [17] have been developed. In [19,20] *I*-topological spaces and *I*-bitopological spaces generated by fuzzy norm have been discussed.

In this paper we define intuitionistic fuzzy quasi pseudo n-norm and study the I-topology and I-bitopology generated by this new norm. A characterization of I-topological spaces and I-bitopological spaces are also established.

 $^{^{*}}Corresponding author$

2 Preliminaries

16

In this section we recall some useful definitions and results.

Definition 2.1. [18] A binary operation $*: [0,1] \times [0,1] \rightarrow [0,1]$ is a *continuous* t-norm if * satisfies the following conditions:

- (i) * is commutative and associative
- (ii) * is continuous
- (iii) a * 1 = a, for all $a \in [0, 1]$
- (iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ and $a, b, c, d \in [0, 1] = I$.

Definition 2.2. [18] A binary operation $\diamond : [0,1] \times [0,1] \rightarrow [0,1]$ is a *continuous t*-co-norm if \diamond satisfies the following conditions:

- (i) \diamond is commutative and associative
- (ii) \diamond is continuous
- (iii) $a \diamond 0 = a$, for all $a \in [0, 1]$

(iv) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$ and $a, b, c, d \in [0, 1]$.

Remark 2.3. [20] The algebraic operations on I can be extended pointwise to the set I^X of all maps from $X \to I$. i.e., If $\mu_1, \mu_2 \in I^X$ then $(\mu_1 * \mu_2)(x) = \mu_1(x) * \mu_2(x)$ for all $x \in X$.

Definition 2.4. [20] Let X be a non-empty set. A subset \Im of I^X is called an I-topology on X if \Im satisfies the following conditions:

- (i) $1_X, 1_\phi \in \mathfrak{S}$
- (ii) $\mu_1, \mu_2 \in \Im$ implies $\mu_1 * \mu_2 \in \Im$
- (iii) $\{\mu_i | i \in \text{ index set}\} \subseteq \Im$ implies $\forall \mu_i \in \Im$.

Example 2.5. [20] Let $X = \{a, b\}$ and * be defined by $r*s = \min\{r, s\}$. Consider $\mu_1 \in I^X$ defined by $\mu_1(x) = \begin{cases} \frac{1}{2} & \text{if } x = a \\ 0 & \text{if } x = b \end{cases}$.

Then $\mathfrak{F} = \{1_X, 1_{\phi}, \mu_1\}$ is an I-topology on X. In this example if * is a product norm then $\mathfrak{F} = \{1_X, 1_{\phi}, \mu_1\}$ is not an I-topology on X since $\mu_1 * \mu_1$ is not an element in \mathfrak{F} .

Definition 2.6. [11] Let $n \in \mathbb{N}$ (natural numbers) and X be a real linear space of dimension greater than or equal to n. A real valued function $||\bullet, \ldots, \bullet||$ on $X \times \cdots \times X = X^n$ satisfying the following four properties:

n

- 1. $||x_1, x_2, \ldots, x_n|| = 0$ if and only if x_1, x_2, \ldots, x_n are linearly dependent
- 2. $||x_1, x_2, \ldots, x_n||$ is invariant under any permutation of x_1, x_2, \ldots, x_n
- 3. $||x_1, x_2, ..., kx_n|| = |k| ||x_1, x_2, ..., x_n||$, for any $k \in \mathbb{R}$ (set of real numbers)
- 4. $||x_1, x_2, \dots, x_{n-1}, y+z|| \le ||x_1, x_2, \dots, x_{n-1}, y|| + ||x_1, x_2, \dots, x_{n-1}, z||$

is called an *n*-norm on X and the pair $(X, ||\bullet, ..., \bullet||)$ is called an *n*-normed linear space.

Definition 2.7. [17] An *intuitionistic fuzzy* n*-normed linear space* or in short i-f-n-NLS is an object of the form

$$A = \{ (X, N(x_1, x_2, \dots, x_n, t), M(x_1, x_2, \dots, x_n, t)) / (x_1, x_2, \dots, x_n) \in X^n \}$$

where X is a linear space over a field \mathbb{F} , * is a continuous t-norm, \diamond is a continuous t-co-norm and N, M are fuzzy sets on $X^n \times (0, \infty)$; N denotes the degree of membership and M denotes the degree of non-membership of $(x_1, x_2, \ldots, x_n, t) \in X^n \times (0, \infty)$ satisfying the following conditions:

- (1) $N(x_1, x_2, \dots, x_n, t) + M(x_1, x_2, \dots, x_n, t) \le 1$
- (2) $N(x_1, x_2, \dots, x_n, t) > 0$
- (3) $N(x_1, x_2, \ldots, x_n, t) = 1$ if and only if x_1, x_2, \ldots, x_n are linearly dependent
- (4) $N(x_1, x_2, \ldots, x_n, t)$ is invariant under any permutation of x_1, x_2, \ldots, x_n
- (5) $N(x_1, x_2, \dots, cx_n, t) = N(x_1, x_2, \dots, x_n, \frac{t}{|c|})$ if $c \neq 0, c \in \mathbb{F}$
- (6) $N(x_1, x_2, \dots, x_n, s) * N(x_1, x_2, \dots, x'_n, t) \le N(x_1, x_2, \dots, x_n + x'_n, s + t)$
- (7) $N(x_1, x_2, \dots, x_n, t) : (0, \infty) \to [0, 1]$ is continuous in t
- (8) $M(x_1, x_2, \dots, x_n, t) > 0$
- (9) $M(x_1, x_2, \ldots, x_n, t) = 0$ if and only if x_1, x_2, \ldots, x_n are linearly dependent
- (10) $M(x_1, x_2, \ldots, x_n, t)$ is invariant under any permutation of x_1, x_2, \ldots, x_n
- (11) $M(x_1, x_2, \dots, cx_n, t) = M(x_1, x_2, \dots, x_n, \frac{t}{|c|})$, if $c \neq 0, c \in \mathbb{F}$
- (12) $M(x_1, x_2, \dots, x_n, s) \diamond M(x_1, x_2, \dots, x'_n, t) \ge M(x_1, x_2, \dots, x_n + x'_n, s + t)$

(13) $M(x_1, x_2, \ldots, x_n, t) : (0, \infty) \to [0, 1]$ is continuous in t.

Remark 2.8. For convenience we denote the intuitionistic fuzzy *n*-normed linear space by $A = (X, N, M, *, \diamond)$.

Example 2.9. Let $(X, || \bullet, ..., \bullet ||)$ be an *n*-normed linear space, where X = R. Define $a * b = \min\{a, b\}$ and $a \diamond b = \max\{a, b\}$, for all $a, b \in [0, 1]$,

$$N(x_1, x_2, \dots, x_n, t) = e^{-||x_1, x_2, \dots, x_n||/t},$$

$$M(x_1, x_2, \dots, x_n, t) = 1 - e^{-||x_1, x_2, \dots, x_n||/t}.$$

Then $A = \{(X, N(x_1, x_2, \dots, x_n, t), M(x_1, x_2, \dots, x_n, t)) / (x_1, x_2, \dots, x_n) \in X^n\}$ is an i-f-*n*-NLS.

3 *I*-topological and *I*-bitopological spaces

Definition 3.1. Let A be an i-f-n-NLS and let $\alpha \in (0,1]$, $\epsilon > 0$ and $x \in A$. The fuzzy set $\mathbf{N}_{\alpha}(x,\epsilon)$ in A is defined as

$$\mathbf{N}_{\alpha}(x,\epsilon)(y) = \begin{cases} \alpha & \text{if } N(x-y,\epsilon) > 1-\alpha \text{ and } M(x-y,\epsilon) < \alpha \\ 0 & \text{otherwise} \end{cases}$$

for $y \in A$ is called the α -open sphere in an i-f-n-NLS with center at x.

Definition 3.2. Let A be an i-f-*n*-NLS. A fuzzy set $\mu \in I^X$ is said to be *open* if $\mu(x) > 0$ implies there exists $\epsilon > 0$ and $\alpha \in (0, 1]$ such that $\mathbf{N}_{\alpha}(x, \epsilon) \subseteq \mu$.

Theorem 3.3. Let A be an i-f-n-NLS. Then $\mathfrak{S}_{N,M} = \{\mu \in I^X : \mu \text{ is open}\}$ is an I-topology on A.

Proof. (i) Clearly, $1_X, 1_\phi \in \mathfrak{S}_{N,M}$.

(ii) Proof of $\mu_1, \mu_2 \in \mathfrak{S}_{N,M}$ implies $\mu_1 * \mu_2 \in \mathfrak{S}_{N,M}$.

 $\mu_1, \mu_2 \in \mathfrak{S}_{N,M} \Rightarrow \mu_1, \mu_2 \in I^X$ and μ_1, μ_2 are open. $\mu_1, \mu_2 \in I^X \Rightarrow \mu_1 * \mu_2 \in I^X$ (by definition of *). μ_1 is open. Therefore $\mu_1(x) > 0 \Rightarrow \exists \epsilon_1 > 0$ and $\alpha \in (0, 1]$ such that $\mathbf{N}_{\alpha}(x, \epsilon_1) \subseteq \mu_1$. μ_2 is open. Therefore $\mu_2(x) > 0 \Rightarrow \exists \epsilon_2 > 0$ and $\alpha \in (0, 1]$ such that $\mathbf{N}_{\alpha}(x, \epsilon_2) \subseteq \mu_2$. Let $\epsilon = \min(\epsilon_1, \epsilon_2)$. Therefore $\mathbf{N}_{\alpha}(x, \epsilon) \subseteq \mu_1$ and $\mathbf{N}_{\alpha}(x, \epsilon) \subseteq \mu_2 \Rightarrow \mathbf{N}_{\alpha}(x, \epsilon) \subseteq \mu_1 * \mu_2$ (by condition (iv) in definition of *) $\Rightarrow \mu_1 * \mu_2$ is open. $\mu_1 * \mu_2 \in I^X$ and $\mu_1 * \mu_2$ is open $\Rightarrow \mu_1 * \mu_2 \in \mathfrak{S}_{N,M}$. (iii) Let $\{\mu_i\}$ be any collection of members of $\mathfrak{S}_{N,M}$. Proof of $\bigcup_{i \in I} \mu_i \in \mathfrak{S}_{N,M}$. If $(\bigcup_{i \in I} \mu_i)(x) > 0, \exists$ an i_0 , such that $\mu_{i_0}(x) > 0$. So $\exists \epsilon > 0$ and $\alpha \in (0, 1]$ such that $\mathbf{N}_{\alpha}(x, \epsilon) \subseteq \mu_{i_0} \subseteq \bigcup_{i \in I} \mu_i$. Hence $\bigcup_{i \in I} \mu_i \in \mathfrak{S}_{N,M}$.

Remark 3.4. $\mathfrak{S}_{N,M}$ is called an *I*-topology on *A* generated by the intuitionistic fuzzy *n*-norms *N*, *M* and $(A, \mathfrak{S}_{N,M})$ is called as an *I*-topological space.

Definition 3.5. Let (A, \Im_{N_1,M_1}) and (B, \Im_{N_2,M_2}) be two *I*-topological spaces. A mapping $f^{\rightarrow} : (A, \Im_{N_1,M_1}) \rightarrow (B, \Im_{N_2,M_2})$ is called *I*-continuous if $f^{\leftarrow}(v) \in \Im_{N_1,M_1}$ for all $v \in \Im_{N_2,M_2}$.

Theorem 3.6. Let $(A, \mathfrak{S}_{N_1,M_1})$, $(B, \mathfrak{S}_{N_2,M_2})$, $(C, \mathfrak{S}_{N_3,M_3})$ be three I-topological spaces and $f^{\rightarrow} : (A, \mathfrak{S}_{N_1,M_1}) \rightarrow (B, \mathfrak{S}_{N_2,M_2})$, $g^{\rightarrow} : (B, \mathfrak{S}_{N_2,M_2}) \rightarrow (C, \mathfrak{S}_{N_3,M_3})$ be two I-continuous mappings. Then $g^{\rightarrow} \circ f^{\rightarrow}$ is I-continuous.

Proof. $f^{\rightarrow}: (A, \mathfrak{S}_{N_1,M_1}) \to (B, \mathfrak{S}_{N_2,M_2})$ is *I*-continuous implies $f^{\leftarrow}(v) \in \mathfrak{S}_{N_1,M_1}$ $\forall v \in \mathfrak{S}_{N_2,M_2}. g^{\rightarrow}: (B, \mathfrak{S}_{N_2,M_2}) \to (C, \mathfrak{S}_{N_3,M_3})$ is *I*-continuous implies $g^{\leftarrow}(w) \in \mathfrak{S}_{N_2,M_2} \forall w \in \mathfrak{S}_{N_3,M_3}$. Now

$$(g \circ f)^{\leftarrow}(w) = f^{\leftarrow}(g^{\leftarrow}(w))$$
$$= f^{\leftarrow}(v) \in \mathfrak{S}_{N_1,M_1}, \ \forall \ w \in \mathfrak{S}_{N_3,M_2}$$

which implies $g^{\rightarrow} \circ f^{\rightarrow}$ is *I*-continuous.

Definition 3.7. Let $\mathfrak{S}_{N_1,M_1}, \mathfrak{S}_{N_2,M_2}$ be two *I*-topologies on *A*. Then $(A, \mathfrak{S}_{N_1,M_1}, \mathfrak{S}_{N_2,M_2})$ is called an *I*-bitopological space.

Example 3.8. Let $X = \{a, b\}$. $\underbrace{X \times \cdots \times X}_{n} = \{x_1, \dots, x_n\}, x_i$ is either *a* or *b*. We define $||x_1, x_2, \dots, x_n|| = (\sum_{i=1}^n |x_i|^2)^{\frac{1}{2}}$.

(i)
$$||x_1, x_2, \dots, x_n|| = 0 \iff (\sum_{\substack{i=1\\n}}^n |x_i|^2)^{\frac{1}{2}} = 0$$

 $\Leftrightarrow \sum_{\substack{i=1\\i=1}}^n |x_i|^2 = 0$
 $\Leftrightarrow x_i = 0, \forall i = 1, 2, \dots, n$
 $\Leftrightarrow x_1, x_2, \dots, x_n$ are linearly dependent.

(ii) Clearly, $||x_1, x_2, \ldots, x_n||$ is invariant under any permutation of x_1, x_2, \ldots, x_n .

(iii)
$$||x_1, x_2, \dots, \alpha x_n|| = (|x_1|^2 + |x_2|^2 + \dots + |\alpha x_n|^2)^{\frac{1}{2}}$$

= $(|x_1|^2 + |x_2|^2 + \dots + |\alpha|^2 |x_n|^2)^{\frac{1}{2}}$
= $|\alpha| ||x_1, x_2, \dots, x_n||$ if and only if $\alpha = 1$

(iv)
$$||x_1, x_2, \dots, x_{n-1}, y|| + ||x_1, x_2, \dots, x_{n-1}, z||$$

$$= (|x_1|^2 + |x_2|^2 + \dots + |x_{n-1}|^2 + |y|^2)^{\frac{1}{2}} + (|x_1|^2 + |x_2|^2 + \dots + |x_{n-1}|^2 + |z|^2)^{\frac{1}{2}}$$

$$\geq (|x_1|^2 + |x_2|^2 + \dots + |x_{n-1}|^2 + |y+z|^2)^{\frac{1}{2}}$$

$$\geq ||x_1, x_2, \dots, x_{n-1}, y+z||$$

Hence $(X, ||x_1, x_2, ..., x_n||)$ is a *n*-normed linear space. Let $*, \diamond$ be defined by $r * s = \min\{r, s\}, r \diamond s = \max\{r, s\}$. Consider $\mu_1, \mu_2 \in I^X$ defined by

$$\mu_1(x) = \begin{cases} \frac{1}{2} & \text{if } x = a \\ 0 & \text{if } x = b \end{cases} \quad \text{and} \quad \mu_2(x) = \begin{cases} \frac{1}{2} & \text{if } x = a \\ \frac{1}{2} & \text{if } x = b \end{cases}$$

Let $\mathfrak{S}_{N_1,M_1} = \{1_X, 1_{\phi}, \mu_1\}$ and $\mathfrak{S}_{N_2,M_2} = \{1_X, 1_{\phi}, \mu_2\}$. Then $(A, \mathfrak{S}_{N_1,M_1}, \mathfrak{S}_{N_2,M_2})$ is an *I*-bitopological space.

Definition 3.9. Let $(A, \Im_{N_1,M_1}, \Im_{N_2,M_2})$ and $(B, \Im_{N_3,M_3}, \Im_{N_4,M_4})$ be two *I*bitopological spaces. Then $f^{\rightarrow} : (A, \Im_{N_1,M_1}, \Im_{N_2,M_2}) \rightarrow (B, \Im_{N_3,M_3}, \Im_{N_4,M_4})$ is *I*bicontinuous if $f^{\leftarrow}(u) \in \Im_{N_1,M_1} \forall u \in \Im_{N_3,M_3}$ and $f^{\leftarrow}(v) \in \Im_{N_2,M_2} \forall v \in \Im_{N_4,M_4}$.

Definition 3.10. An *I*-topological space $(A, \mathfrak{S}_{N,M})$ is called a T_0 -space if for every pair of distinct points $x, y \in A$, there exists $\mu \in \mathfrak{S}_{N,M}$ such that $\mu(x) \neq \mu(y)$.

Example 3.11. Let $X = \{a, b\}$ and $*, \diamond$ be defined by $r * s = \min\{r, s\}$, $r \diamond s = \max\{r, s\}$. Consider $\mu_1 \in I^X$ defined by

 $\mu_1(x) = \begin{cases} \frac{1}{2} & \text{if } x = a \\ 0 & \text{if } x = b \end{cases}$. Then $\Im_{N,M} = \{1_X, 1_{\phi}, \mu_1\}$ is a *I*-topology on *A*.

 $(A, \mathfrak{F}_{N,M})$ is a T_0 -space, whereas $(A, \mathfrak{F}_{N_2,M_2})$ given in Example 3.8 is not a T_0 -space.

Definition 3.12. An *I*-topological space $(A, \Im_{N,M})$ is called a T_1 -space if for any two distinct points $x, y \in A$, there exists $\mu_1, \mu_2 \in \Im_{N,M}$ such that $\mu_1(x) > 0$, $\mu_1(y) = 0$ and $\mu_2(x) = 0, \mu_2(y) > 0$.

Example 3.13. Let $X = \{a, b\}$ and $*, \diamond$ be defined by $r * s = \min\{r, s\}$, $r \diamond s = \max\{r, s\}$. Consider $\mu_1, \mu_2 \in I^X$ defined by

$$\mu_1(x) = \begin{cases} \frac{1}{2} & \text{if } x = a \\ 0 & \text{if } x = b \end{cases} \quad \text{and} \quad \mu_2(x) = \begin{cases} 0 & \text{if } x = a \\ \frac{1}{2} & \text{if } x = b \end{cases}$$

Then $\mathfrak{F}_{N,M} = \{1_X, 1_{\phi}, \mu_1, \mu_2\}$ is a *I*-topology on *A* and $(A, \mathfrak{F}_{N,M})$ is a *T*₁-space. The topological space given in Example 3.11 is not a *T*₁-space. It is clear that every *T*₁-space is a *T*₀-space but not the converse.

Definition 3.14. An *I*-topological space $(A, \Im_{N,M})$ is called a T_2 -space if for any two distinct points $x, y \in A$, there exists $\mu_1, \mu_2 \in \Im_{N,M}$ such that $\mu_1(x) > 0$, $\mu_2(y) > 0$ and $\mu_1 * \mu_2 = 1_{\phi}, \ \mu_1 \diamond \mu_2 = 1_X$.

Example 3.15. Let $X = \{a, b\}$ and $*, \diamond$ be defined by $r * s = \max\{0, r+s-1\}, r \diamond s = \min\{1, 2-r-s\}$. Consider $\mu_1, \mu_2 \in I^X$ defined by

$$\mu_1(x) = \begin{cases} \frac{1}{2} & \text{if } x = a \\ 0 & \text{if } x = b \end{cases} \quad \text{and} \quad \mu_2(x) = \begin{cases} 0 & \text{if } x = a \\ \frac{1}{2} & \text{if } x = b \end{cases}$$

Then $\mathfrak{P}_{N,M} = \{1_X, 1_{\phi}, \mu_1, \mu_2\}$ is a *I*-topology on *A*. The *I*-topological space $(A, \mathfrak{P}_{N,M})$ is a T_2 -space.

Definition 3.16. An *I*-bitopological space $(A, \mathfrak{S}_{N_1,M_1}, \mathfrak{S}_{N_2,M_2})$ is said to be *pairwise Hausdorff* if for any two distinct points $x, y \in A$, there exists a \mathfrak{S}_{N_1,M_1} open set μ_1 and a \mathfrak{S}_{N_2,M_2} open set μ_2 such that $\mu_1(x) > 0, \mu_2(y) > 0$ and $\mu_1 * \mu_2 = 1_{\phi}, \ \mu_1 \diamond \mu_2 = 1_X$ and there exists a \mathfrak{S}_{N_1,M_1} open set μ_3 and a \mathfrak{S}_{N_2,M_2} open set μ_4 such that $\mu_3(y) > 0, \mu_4(x) > 0$ and $\mu_3 * \mu_4 = 1_{\phi}, \ \mu_3 \diamond \mu_4 = 1_X$.

Example 3.17. Let $X = \{a, b\}$ and $*, \diamond$ be defined by $r * s = \max\{0, r+s-1\}, r \diamond s = \min\{1, 2-r-s\}$. Consider $\mu_1, \mu_2, \mu_3 \in I^X$ defined by

$$\mu_1(x) = \begin{cases} \frac{1}{2} & \text{if } x = a \\ 0 & \text{if } x = b \end{cases}, \qquad \mu_2(x) = \begin{cases} 0 & \text{if } x = a \\ \frac{1}{2} & \text{if } x = b \end{cases}$$
 and
$$\mu_3(x) = \begin{cases} \frac{1}{2} & \text{if } x = a \\ \frac{1}{2} & \text{if } x = b \end{cases}.$$

Then $\mathfrak{S}_{N_1,M_1} = \{1_X, 1_{\phi}, \mu_1, \mu_3\}, \ \mathfrak{S}_{N_2,M_2} = \{1_X, 1_{\phi}, \mu_2, \mu_3\}$ are *I*-topologies on *A*. The *I*-bitopological space $(A, \mathfrak{S}_{N_1,M_1}, \mathfrak{S}_{N_2,M_2})$ is a pairwise Hausdorff space. 22

Definition 3.18. An *I*-bitopological space $(A, \Im_{N_1,M_1}, \Im_{N_2,M_2})$ is said to be pairwise weakly Hausdorff if for any two distinct points $x, y \in A$, there exists a \Im_{N_1,M_1} open set μ_1 and a \Im_{N_2,M_2} open set μ_2 such that $\mu_1(x) > 0, \mu_2(y) > 0$ and $\mu_1 * \mu_2 = 1_{\phi}, \ \mu_1 \diamond \mu_2 = 1_X$ or there exists a \Im_{N_1,M_1} open set μ_3 and a \Im_{N_2,M_2} open set μ_4 such that $\mu_3(y) > 0, \mu_4(x) > 0$ and $\mu_3 * \mu_4 = 1_{\phi}, \ \mu_3 \diamond \mu_4 = 1_X$.

Example 3.19. Let $X = \{a, b\}$ and $*, \diamond$ be defined by $r * s = \max\{0, r+s-1\}, r \diamond s = \min\{1, 2-r-s\}$. Consider $\mu_1, \mu_2 \in I^X$ defined by

$$\mu_1(x) = \begin{cases} \frac{1}{2} & \text{if } x = a \\ 0 & \text{if } x = b \end{cases} \quad \text{and} \quad \mu_2(x) = \begin{cases} \frac{1}{2} & \text{if } x = a \\ \frac{1}{2} & \text{if } x = b \end{cases}$$

Then $\mathfrak{F}_{N_1,M_1} = \{1_X, 1_\phi, \mu_1\}, \ \mathfrak{F}_{N_2,M_2} = \{1_X, 1_\phi, \mu_2\}$ are *I*-topologies on *A*. The *I*-bitopological space $(A, \mathfrak{F}_{N_1,M_1}, \mathfrak{F}_{N_2,M_2})$ is a pairwise weakly Hausdorff space.

Theorem 3.20. Assume that $\alpha \neq 0, \beta \neq 0$ implies $\alpha * \beta \neq 0$. If an *I*-bitopological space $(A, \mathfrak{P}_{N_1,M_1}, \mathfrak{P}_{N_2,M_2})$ is pairwise weakly Hausdorff, then \mathfrak{P}_{N_1,M_1} and \mathfrak{P}_{N_2,M_2} are T_0 -topologies.

Proof. Let $x, y \in A$ with $x \neq y$. Since $(A, \mathfrak{S}_{N_1,M_1}, \mathfrak{S}_{N_2,M_2})$ is pairwise weakly Hausdorff, there exists $\mu_1 \in \mathfrak{S}_{N_1,M_1}$ and $\mu_2 \in \mathfrak{S}_{N_2,M_2}$ such that $\mu_1(x) > 0$, $\mu_2(y) > 0$ and $\mu_1 * \mu_2 = 1_{\phi}$, $\mu_1 \diamond \mu_2 = 1_X$. Since $\mu_1(x) > 0$ and $\mu_2(y) > 0$, $\mu_1(y) = 0$ and $\mu_2(x) = 0$. Hence $\mu_1(x) > 0, \mu_1(y) = 0$ and $\mu_2(x) = 0, \mu_2(y) > 0$. That is \mathfrak{S}_{N_1,M_1} and \mathfrak{S}_{N_2,M_2} are T_0 -topologies.

Theorem 3.21. Assume that $\alpha \neq 0, \beta \neq 0$ implies $\alpha * \beta \neq 0$. If an *I*-bitopological space $(A, \Im_{N_1,M_1}, \Im_{N_2,M_2})$ is pairwise Hausdorff, then \Im_{N_1,M_1} and \Im_{N_2,M_2} are T_1 -topologies.

Proof. Let $x, y \in A$ with $x \neq y$. Since $(A, \Im_{N_1,M_1}, \Im_{N_2,M_2})$ is pairwise Hausdorff, $\exists \mu_1 \in \Im_{N_1,M_1}$ and $\mu_2 \in \Im_{N_2,M_2}$ such that $\mu_1(x) > 0, \mu_2(y) > 0$ and $\mu_1 * \mu_2 = 1_{\phi}$, $\mu_1 \diamond \mu_2 = 1_X$. Also there exists $\mu_3 \in \Im_{N_1,M_1}$ and $\mu_4 \in \Im_{N_2,M_2}$ such that $\mu_3(y) > 0, \mu_4(x) > 0$ and $\mu_3 * \mu_4 = 1_{\phi}, \ \mu_3 \diamond \mu_4 = 1_X$. Hence $\mu_1, \mu_3 \in \Im_{N_1,M_1}$ with $\mu_1(x) > 0, \mu_1(y) = 0$ and $\mu_3(x) = 0, \mu_3(y) > 0$. Also $\mu_2, \mu_4 \in \Im_{N_2,M_2}$ with $\mu_2(x) = 0, \mu_2(y) > 0$ and $\mu_4(x) > 0, \mu_4(y) = 0$. Therefore \Im_{N_1,M_1} and \Im_{N_2,M_2} are T_1 -topologies.

Theorem 3.22. Assume that $\alpha \neq 0, \beta \neq 0$ implies $\alpha * \beta \neq 0$. If an *I*-bitopological space $(A, \Im_{N_1,M_1}, \Im_{N_2,M_2})$ is pairwise Hausdorff, then \Im_{N_1,M_1} or \Im_{N_2,M_2} is a T_2 -topology.

Proof. Let $x, y \in A$ with $x \neq y$. Since $(A, \Im_{N_1,M_1}, \Im_{N_2,M_2})$ is pairwise Hausdorff, ∃ $\mu_1 \in \Im_{N_1,M_1}$ and $\mu_2 \in \Im_{N_2,M_2}$ such that $\mu_1(x) > 0, \mu_2(y) > 0$ and $\mu_1 * \mu_2 = 1_{\phi}, \ \mu_1 \diamond \mu_2 = 1_X$. Also there exists $\mu_3 \in \Im_{N_1,M_1}$ and $\mu_4 \in \Im_{N_2,M_2}$ such that $\mu_3(y) > 0, \ \mu_4(x) > 0$ and $\mu_3 * \mu_4 = 1_{\phi}, \ \mu_3 \diamond \mu_4 = 1_X$. Since $\mu_1(x) > 0$ and $\mu_2(y) > 0, \ \mu_1(y) = 0$ and $\mu_2(x) = 0$. Similarly, $\mu_4(y) = 0, \mu_3(x) = 0$. Therefore we have $(\mu_1 * \mu_3)(x) = 0, \ (\mu_1 * \mu_3)(y) = 0$ and $(\mu_2 * \mu_4)(x) = 0, \ (\mu_2 * \mu_4)(y) = 0$. Also $(\mu_1 \diamond \mu_3)(x) = 1, \ (\mu_1 \diamond \mu_3)(y) = 1$ and $(\mu_2 \diamond \mu_4)(x) = 1, \ (\mu_2 \diamond \mu_4)(y) = 1$. Suppose there is a $z \neq x, y$ and $(\mu_1 * \mu_3)(z) \neq 0$. Then $\mu_1(z) \neq 0, \ \mu_3(z) \neq 0$. Hence $\mu_2(z) = 0$ and $\mu_4(z) = 0$ and so we conclude that there exists $\mu_5, \mu_6 \in \Im_{N_1,M_1}$ with $\mu_5(x) > 0, \ \mu_5(y) = 0$ and $\mu_6(y) > 0, \ \mu_6(x) = 0$. Therefore $(\mu_5 * \mu_6)(x) = 0, \ (\mu_5 \diamond \mu_6)(y) = 0, \$ so that $\mu_5 * \mu_6 = 1_{\phi}$. Hence $\mu_5 \diamond \mu_6 = 1_X$. Therefore \Im_{N_1,M_1} is a T_2 -topology.

Theorem 3.23. Assume that $\alpha \neq 0, \beta \neq 0$ implies $\alpha * \beta \neq 0$. If either \mathfrak{S}_{N_1,M_1} or \mathfrak{S}_{N_2,M_2} is a T_2 -topology on A and the other is a T_1 -topology on A, then $(A, \mathfrak{S}_{N_1,M_1}, \mathfrak{S}_{N_2,M_2})$ is a pairwise weakly Hausdorff space.

Proof. Suppose \Im_{N_1,M_1} is a T_2 -topology on A and \Im_{N_2,M_2} is a T_1 -topology on A. Let $x, y \in A$ with $x \neq y$. Then there exists $\mu_1, \mu_2 \in \Im_{N_1,M_1}$ such that $\mu_1(x) > 0, \mu_2(y) > 0$ and $\mu_1 * \mu_2 = 1_{\phi}, \ \mu_1 \diamond \mu_2 = 1_X$. Also there exists $\mu_3, \mu_4 \in \Im_{N_2,M_2}$ such that $\mu_3(x) > 0, \mu_3(y) = 0$ and $\mu_4(x) = 0, \mu_4(y) > 0$. Hence $\mu_1(x) > 0, \mu_4(y) > 0$ and $\mu_3(x) > 0, \mu_2(y) > 0$. Therefore we have $(\mu_1 * \mu_4)(x) = 0, (\mu_1 * \mu_4)(y) = 0$ and $(\mu_3 * \mu_2)(x) = 0, (\mu_3 * \mu_2)(y) = 0$. Also $(\mu_1 \diamond \mu_4)(x) = 1, (\mu_1 \diamond \mu_4)(y) = 1$ and $(\mu_3 \diamond \mu_2)(x) = 1, (\mu_3 \diamond \mu_2)(y) = 1$. Let $z \neq x, y$ with $(\mu_1 * \mu_4)(z) \neq 0$. Then $\mu_1(z) \neq 0, \mu_4(z) \neq 0$. Hence $\mu_2(z) = 0$ and so $(\mu_3 * \mu_2)(z) = 0$. Therefore we can find $\mu_5 \in \Im_{N_1,M_1}$ and $\mu_6 \in \Im_{N_2,M_2}$ with $\mu_5(x) > 0, \mu_6(y) > 0$ such that $\mu_5 * \mu_6 = 1_{\phi}, \mu_5 \diamond \mu_6 = 1_X$ as proved earlier or $\mu_1 * \mu_4 = 1_{\phi}, \mu_1 \diamond \mu_4 = 1_X$ and $(A, \Im_{N_1,M_1}, \Im_{N_2,M_2})$ is pairwise weakly Hausdorff.

4 Intuitionistic fuzzy quasi pseudo *n*-normed linear spaces

Definition 4.1. Let X be any vector space, * be a continuous t-norm and \diamond a continuous t-co-norm. Then the functions $P, Q : X^n \times (0, \infty) \to [0, 1]$ satisfying the following conditions

- (1) P(0,t) + Q(0,t) = 1 where $0 = (0,0,\ldots,0)$
- (2) $P(x_1, x_2, \dots, x_n x'_n, t + s) \ge P(x_1, x_2, \dots, x_n, t) * P(x_1, x_2, \dots, x'_n, s)$
- (3) $P(x_1, x_2, \ldots, x_n, \cdot) : (0, \infty) \to [0, 1]$ is left continuous
- (4) $P(x_1, x_2, \dots, x_n, t) \to 1 \text{ as } t \to \infty$
- (5) $Q(x_1, x_2, \dots, x_n x'_n, t + s) \le Q(x_1, x_2, \dots, x_n, t) \diamond Q(x_1, x_2, \dots, x'_n, s)$
- (6) $Q(x_1, x_2, \ldots, x_n, \cdot) : (0, \infty) \to [0, 1]$ is left continuous
- (7) $Q(x_1, x_2, \dots, x_n, t) \to 0$ as $t \to \infty$

for all $x_1, x_2, \ldots, x_n, x'_n \in X, t, s \in (0, \infty)$ is called an *intuitionistic fuzzy quasi* pseudo n-norm on X and $(X, P, Q, *, \diamond)$ is called an *intuitionistic fuzzy quasi* pseudo n-normed linear space or in short i-f-q-p-n-NLS.

Example 4.2. Let X be any real vector space, $a * b = \min\{a, b\}, a \diamond b = \max\{a, b\}$. Define

$$P(x_1, x_2, \dots, x_n, t) = \begin{cases} 0 & \text{if } (x_1, x_2, \dots, x_n) \neq 0 \text{ and } t \in (0, 1] \\ 1 - \frac{1}{t} & \text{if } (x_1, x_2, \dots, x_n) \neq 0 \text{ and } t \in (1, \infty) \\ 1 & \text{if } (x_1, x_2, \dots, x_n) = 0 \text{ and } t \in (0, \infty) \end{cases}$$

and

$$Q(x_1, x_2, \dots, x_n, t) = \begin{cases} 1 & \text{if } (x_1, x_2, \dots, x_n) \neq 0 \text{ and } t \in (0, 1] \\ \frac{1}{t} & \text{if } (x_1, x_2, \dots, x_n) \neq 0 \text{ and } t \in (1, \infty) \\ 0 & \text{if } (x_1, x_2, \dots, x_n) = 0 \text{ and } t \in (0, \infty) \end{cases}$$

- (i) Clearly P(0,t) + Q(0,t) = 1.
- (ii) Since $\frac{1}{t+s} < \frac{1}{t}$ and $\frac{1}{t+s} < \frac{1}{s}, 1 \frac{1}{t+s} \ge 1 \frac{1}{t} * 1 \frac{1}{s}$ for all t, s > 0. Hence $P(x_1, x_2, \dots, x_n - x'_n, t+s) \ge P(x_1, x_2, \dots, x_n, t) * Q(x_1, x_2, \dots, x'_n, s)$.
- (iii) $P(x_1, x_2, \dots, x_n, \cdot) : (0, \infty) \to [0, 1]$ is left continuous.
- (iv) $P(x_1, x_2, \ldots, x_n, t) \to 1$ as $t \to \infty$.
- (v) Since $\frac{1}{t+s} \leq \frac{1}{t} \diamond \frac{1}{s}$,

$$Q(x_1, x_2, \dots, x_n - x'_n, t + s) \le Q(x_1, x_2, \dots, x_n, t) \diamond Q(x_1, x_2, \dots, x'_n, s)$$

- (vi) $Q(x_1, x_2, \ldots, x_n, \cdot) : (0, \infty) \to [0, 1]$ is left continuous.
- (vii) $Q(x_1, x_2, \dots, x_n, t) \to 0$ as $t \to \infty$.

Hence $(X, P, Q, *, \diamond)$ is an i-f-q-p-*n*-NLS. Also $P((x_1/5, x_2, ..., x_n), 4/5) = 0$ and $P((x_1, x_2, ..., x_n), (4/5)/|1/5|) = 3/4$. Therefore $P(kx_1, x_2, ..., x_n, t) \neq P(x_1, x_2, ..., x_n, t/|k|)$ for t = 4/5 and k = 1/5. Hence $(X, P, Q, *, \diamond)$ is not an i-f-*n*-NLS.

Definition 4.3. An i-f-q-p-*n*-norm P, Q is said to be an *intuitionistic fuzzy* quasi *n*-norm if $P(x_1, x_2, \ldots, x_n, t) = 1$ and $Q(x_1, x_2, \ldots, x_n, t) = 0, \forall t$ implies $(x_1, x_2, \ldots, x_n) = (0, 0, \ldots, 0)$.

Definition 4.4. An i-f-q-p-*n*-norm P, Q is said to be an *intuitionistic fuzzy* pseudo *n*-norm if $P(x_1, x_2, \ldots, kx_n, t) = P(x_1, x_2, \ldots, x_n, \frac{t}{|k|})$ and $Q(x_1, x_2, \ldots, kx_n, t) = Q(x_1, x_2, \ldots, x_n, \frac{t}{|k|})$ for all scalar k and $(x_1, x_2, \ldots, x_n) \in X^n$.

Remark 4.5. $P(0, 0, ..., k0, t) = P(0, 0, ..., 0, \frac{t}{|k|}) = 1$ and $Q(0, 0, ..., k0, t) = Q(0, 0, ..., 0, \frac{t}{|k|}) = 0$, i.e., P(0, s) = 1 and Q(0, s) = 0 where s is positive.

Proposition 4.6. Let P, Q be *i*-f-q-p-n-norm on X and suppose

$$P_1(x_1, x_2, \dots, x_n, t) = P(x_1, x_2, \dots, -x_n, t),$$

$$Q_1(x_1, x_2, \dots, x_n, t) = Q(x_1, x_2, \dots, -x_n, t)$$

where $(x_1, x_2, \ldots, x_n) \in X^n$. Then P_1, Q_1 is also an *i*-f-q-p-n-norm on X.

- *Proof.* (i) $P_1(0,t) = P(0,t) = 1$ and $Q_1(0,t) = Q(0,t) = 0$ where $0 = (0,0,\ldots,0)$.
- (ii) $P_1(x_1, x_2, \dots, x_n x'_n, t+s)$

$$= P(x_1, x_2, \dots, x'_n - x_n, t + s)$$

= $P(x_1, x_2, \dots, -x_n - (-x'_n), t + s)$
 $\ge P(x_1, x_2, \dots, -x_n, t) * P(x_1, x_2, \dots, -x'_n, s)$
 $\ge P_1(x_1, x_2, \dots, x_n, t) * P_1(x_1, x_2, \dots, x'_n, s).$

Similarly,
$$Q_1(x_1, x_2, \dots, x_n - x'_n, t + s)$$

 $\leq Q(x_1, x_2, \dots, x_n, t) \diamond Q(x_1, x_2, \dots, x'_n, s).$

- (iii) Since $P(x_1, x_2, \ldots, x_n, \cdot), Q(x_1, x_2, \ldots, x_n, \cdot) : (0, \infty) \to [0, 1]$ is left continuous, $P_1(x_1, x_2, \ldots, x_n, \cdot)$ and $Q_1(x_1, x_2, \ldots, x_n, \cdot) : (0, \infty) \to [0, 1]$ is also left continuous.
- (iv) Also $P_1(x_1, x_2, \dots, x_n, t) \to 1$ and $Q_1(x_1, x_2, \dots, x_n, t) \to 0$ as $t \to \infty$. Therefore P_1, Q_1 is also an i-f-q-p-*n*-norm on X.

Remark 4.7. P_1, Q_1 defined by $P_1(x_1, x_2, \ldots, x_n, t) = P(x_1, x_2, \ldots, -x_n, t)$, $Q_1(x_1, x_2, \ldots, x_n, t) = Q(x_1, x_2, \ldots, -x_n, t)$ are called *conjugate i-f-q-p-n-norm* of P, Q. If P, Q is an intuitionistic fuzzy pseudo *n*-norm, then $P = P_1$ and $Q = Q_1$. Again if P, Q is an intuitionistic fuzzy quasi *n*-norm, then so is P_1, Q_1 . Hereafter we denote the conjugate i-f-q-p-*n*-norm of P, Q by -P, -Q.

Definition 4.8. A function $': [0,1] \rightarrow [0,1]$ is said to be an *order reverting involution on* [0,1] if it satisfies the following conditions

(i) $\alpha \leq \beta \Rightarrow \beta' \leq \alpha'$

26

(ii) $\alpha'' = \alpha$ for $\alpha, \beta \in [0, 1]$.

Definition 4.9. Let A be an i-f-*n*-NLS along with an order reverting involution ' on I and $\alpha \in (0, 1], \epsilon > 0$ and $x \in A$. The fuzzy set $\mathbf{N}'_{\alpha}(x, \epsilon) \in I^X$ is defined as

$$\mathbf{N}_{\alpha}'(x,\epsilon)(y) = \begin{cases} \alpha & \text{if } N(x-y,\epsilon) > \alpha' \text{ and } M(x-y,\epsilon) < 1-\alpha' \\ 0 & \text{otherwise} \end{cases}$$

where $y \in A$ is called the α -open sphere in an *i*-f-n-NLS with an order reverting involution ' on I and centre x.

Definition 4.10. Let A be an i-f-n-NLS with an order reverting involution ' on I. A fuzzy set $\mu \in I^X$ is said to be *open* if $\mu(x) > 0$ implies there exists $\epsilon > 0$ and $\alpha \in (0, 1]$ such that $\mathbf{N}'_{\alpha}(x, \epsilon) \subseteq \mu$.

Note 4.11. For the rest of the paper we consider only t-norms for which $\alpha \neq 0$, $\beta \neq 0$ implies $\alpha * \beta \neq 0$.

Theorem 4.12. Let A be an i-f-n-NLS with an order reverting involution ' on I. Then $\mathfrak{S}_{N',M'} = \{\mu \in I^X : \mu \text{ is open}\}$ is an I-topology on A.

Proof. Proof of this Theorem is obvious.

Theorem 4.12 implies that an i-f-n-norm generates an I-topology. The i-f-qp-n-norm is a weak form of an i-f-n-norm, but still it generates an I-topology as shown by the following.

Theorem 4.13. Let $(X, P, Q, *, \diamond)$ be an *i*-f-q-p-n-NLS along with an order reverting involution ' on I. Then the collection $\Im_{P,Q} = \{\mu \in I^X : \mu \text{ is open}\}$ is an *I*-topology on $(X, P, Q, *, \diamond)$.

Proof. (i) Clearly $1_X, 1_\phi \in \mathfrak{P}_{P,Q}$.

(ii) Let $\mu_1, \mu_2 \in \mathfrak{F}_{P,Q}$ and suppose there exists an element x such that $(\mu_1 * \mu_2)(x) > 0$. Then $\mu_1(x) > 0$ and $\mu_2(x) > 0$, where $x = (x_1, x_2, \ldots, x_n) \in X^n$, i.e., there are $\alpha_1, \alpha_2 \in (0, 1]$ and $\epsilon_1, \epsilon_2 > 0 \ni \mathbf{N}'_{\alpha_1}(x, \epsilon_1) \subseteq \mu_1$ and $\mathbf{N}'_{\alpha_2}(x, \epsilon_2) \subseteq \mu_2$. Consider $\alpha = \alpha_1 * \alpha_2$ and $\epsilon = \min\{\epsilon_1, \epsilon_2\}$.

Since $\alpha' \geq \alpha'_1, P(x_1, x_2, \dots, x_n, \epsilon) > \alpha'$ and $Q(x_1, x_2, \dots, x_n, \epsilon) < 1 - \alpha'$ $\Rightarrow P(x_1, x_2, \dots, x_n, \epsilon) > \alpha'_1$ and $Q(x_1, x_2, \dots, x_n, \epsilon) < 1 - \alpha'_1$. Since $\epsilon \leq \epsilon_1, P(x_1, x_2, \dots, x_n, \epsilon_1) > \alpha'_1$ and $Q(x_1, x_2, \dots, x_n, \epsilon_1) < 1 - \alpha'_1$ and hence $\mathbf{N}'_{\alpha}(x, \epsilon) \subseteq \mathbf{N}'_{\alpha_1}(x, \epsilon_1) \subseteq \mu_1$ and $\mathbf{N}'_{\alpha}(x, \epsilon) \subseteq \mathbf{N}'_{\alpha_2}(x, \epsilon_2) \subseteq \mu_2$, which implies that $\mathbf{N}'_{\beta}(x, \epsilon) \subseteq \mathbf{N}'_{\alpha}(x, \epsilon) * \mathbf{N}'_{\alpha}(x, \epsilon) \subseteq \mu_1 * \mu_2$ where $\beta = \alpha * \alpha$. Hence $\mu_1, \mu_2 \in \Im_{P,Q}$ implies $\mu_1 * \mu_2 \in \Im_{P,Q}$.

(iii) Let $\{\mu_i\}$ be any collection of members of $\Im_{P,Q}$. If $\forall \mu_i(x) > 0$, then $\mu_j(x) > 0$ for some j. Hence $\exists \alpha \in (0,1]$ and $\epsilon > 0 \ni \mathbf{N}'_{\alpha}(x,\epsilon) \subseteq \mu_j \subseteq \forall \mu_i$. Thus $\Im_{P,Q}$ is an I-topology on $(X, P, Q, *, \diamond)$.

Proposition 4.14. Let $(X, P, Q, *, \diamond)$ be an *i*-f-q-p-n-NLS along with an order reverting involution ' on I. The fuzzy set μ in I^X is open if and only if μ is the union of open sets in I^X .

Proof. Let $\mu \in \mathfrak{F}_{P,Q}$ and $\mu(x) > 0$. Then there exists $\alpha \in (0,1], \epsilon > 0$ and $x \in A \ni \mathbf{N}'_{\alpha}(x,\epsilon) \subseteq \mu$. Consider $\mathbf{N}^{\circ}_{\alpha}(x,\epsilon)$ defined by

$$\mathbf{N}_{\alpha}^{\circ}(x,\epsilon)(y) = \begin{cases} \mu(x) & \text{if } P(x-y,\epsilon) > \alpha' \text{ and } Q(x-y,\epsilon) < 1 - \alpha' \\ 0 & \text{otherwise} \end{cases}$$

where $y \in A$. Then clearly $\mu = \forall \mathbf{N}^{\circ}_{\alpha}(x, \epsilon)$ and each $\mathbf{N}^{\circ}_{\alpha}(x, \epsilon)$ is an open set. \Box

Theorem 4.15. Let $(X, P, Q, *, \diamond)$ be an *i-f-q-p-n-NLS* along with an order reverting involution ' on I. Then P, Q is an intuitionistic fuzzy quasi n-norm on A if and only if $(A, \Im_{P,Q})$ is a T_1 -space.

Proof. If P, Q is an intuitionistic fuzzy quasi n-norm on A, then for all $x, y \in A$ with $x \neq y$, we have P(x-y,t) = r and Q(x-y,t) = 1-r for some 0 < r < 1 and for some t > 0. Now it is possible to choose one s such that s' > r. Consider the s-open spheres $\mu_1 = \mathbf{N}'_s(x, \frac{t}{2})$ and $\mu_2 = \mathbf{N}'_s(y, \frac{t}{2})$. We claim that $\mathbf{N}'_s(x, \frac{t}{2})(y) = 0$ and $\mathbf{N}'_s(y, \frac{t}{2})(x) = 0$. If not $P(x-y, \frac{t}{2}) > s'$ and $Q(x-y, \frac{t}{2}) < 1-s'$, i.e.,

$$P(x - y, t) = P((x - y) + 0, t)$$

$$\geq P(x - y, \frac{t}{2}) * P(0, \frac{t}{2})$$

$$> s' > r \text{ and}$$

$$Q(x - y, t) \leq Q(x - y, \frac{t}{2}) \diamond Q(0, \frac{t}{2})$$

$$< 1 - s' < 1 - r \text{ which is a contradiction.}$$

Also $\mu_1(x) = s$ and $\mu_2(y) = s > 0$. Hence $(A, \Im_{P,Q})$ is a T_1 -space.

Conversely, suppose $(A, \Im_{P,Q})$ is a T_1 -space. Take $x, y \in A$ with $x \neq y$. Then there exists $\mu_1, \mu_2 \in \Im_{P,Q}$ such that $\mu_1(x) > 0, \mu_1(y) = 0$ and $\mu_2(y) > 0, \mu_2(x) = 0$. Hence $\exists s_1, s_2 \in (0, 1]$ and $t_1, t_2 > 0 \ni \mathbf{N}'_{s_1}(x, t_1) \subseteq \mu_1$ and $\mathbf{N}'_{s_2}(y, t_2) \subseteq \mu_2$. Now since $\mu_1(y) = 0, P(x - y, t_1) \leq s_1$ and $Q(x - y, t_1) \geq 1 - s_1$. Similarly $P(y - x, t_2) \leq s_2$ and $Q(y - x, t_2) \geq 1 - s_2$. Hence $P(x - y, t) \neq 1$ and $Q(x - y, t) \neq 1$ and $Q(x - 0, t) \neq 0$ where $0 = (0, 0, \dots, 0)$. Hence P(x, t) = 1 and Q(x, t) = 0 if and only if x = 0.

Theorem 4.16. Let $(A, \mathfrak{F}_{P,Q}, \mathfrak{F}_{-P,-Q})$ be an I-bitopological space generated by the conjugate pairs of *i*-f-q-p-n-norms P,Q and -P,-Q along with an order reverting involution ' on I. If P,Q is an intuitionistic fuzzy quasi n-norm, then $(A, \mathfrak{F}_{P,Q}, \mathfrak{F}_{-P,-Q})$ is a pairwise Hausdorff space.

Proof. Since P, Q is an intuitionistic fuzzy quasi n-norm, -P, -Q is also an intuitionistic fuzzy quasi n-norm. Hence $\mathfrak{F}_{P,Q}, \mathfrak{F}_{-P,-Q}$ are T_1 -spaces. Let $x, y \in A$ with $x \neq y$. Since $\mathfrak{F}_{P,Q}$ is a T_1 -space, there exists $\mu_1, \mu_2 \in \mathfrak{F}_{P,Q} \ni \mu_1(x) > 0$, $\mu_1(y) = 0$ and $\mu_2(y) > 0, \mu_2(x) = 0$. Similarly $\exists \ \mu_3, \mu_4 \in \mathfrak{F}_{-P,-Q}$ such that $\mu_3(x) > 0, \mu_3(y) = 0$ and $\mu_4(x) = 0, \mu_4(y) > 0$. Now $\exists \ \alpha_1, \alpha_2 \in (0, 1]$ and

 $\epsilon_1, \epsilon_2 > 0 \ni \mathbf{N}'_{\alpha_1}(x, \epsilon_1) \subseteq \mu_1 \text{ and } \mathbf{N}'_{\alpha_2}(x, \epsilon_2) \subseteq \mu_3.$ Since $\mathbf{N}'_{\alpha_1}(x, \epsilon_1)(y) = 0, P(x - y, \epsilon_1) \le \alpha'_1 \text{ and } Q(x - y, \epsilon_1) \ge 1 - \alpha'_1.$

Similarly $-P(x-y,\epsilon_2) \leq \alpha'_2$ and $-Q(x-y,\epsilon_2) \geq 1-\alpha'_2$. Let $\alpha = \alpha_1 * \alpha_2$ and $\epsilon = \min\{\epsilon_1, \epsilon_2\}$. Now it is possible to choose one 0 < s < 1 such that $s' * s' > \alpha'$. Consider the s-open spheres $\mathbf{N}'_s(x, \frac{\epsilon}{2})$ in $\mathfrak{P}_{P,Q}$ and $\mathbf{N}'_s(y, \frac{\epsilon}{2})$ in $\mathfrak{P}_{-P,-Q}$. Then it is enough to prove $\mathbf{N}'_s(x, \frac{\epsilon}{2}) * \mathbf{N}'_s(y, \frac{\epsilon}{2}) = 1_{\phi}$.

Suppose $\mathbf{N}'_s(x, \frac{\epsilon}{2}) * \mathbf{N}'_s(y, \frac{\epsilon}{2})(z) > 0$ for some $z \in A$, then $\mathbf{N}'_s(x, \frac{\epsilon}{2})(z) > 0$ and $\mathbf{N}'_s(y, \frac{\epsilon}{2})(z) > 0$. Hence $P(x-z, \frac{\epsilon}{2}) > s'$, $Q(x-z, \frac{\epsilon}{2}) < 1-s'$ and $-P(y-z, \frac{\epsilon}{2}) > s'$, $-Q(y-z, \frac{\epsilon}{2}) < 1-s'$. Also it is possible to choose δ such that $0 < \delta < \frac{\epsilon}{2}$ and $P(x-z, \delta) > s', Q(x-z, \delta) < 1-s'$. Now

$$\begin{aligned} -P(x-y,\frac{\epsilon}{2}) &\geq -P(x-y,\epsilon) \\ &\geq -P((x-z)-(y-z),\epsilon) \\ &\geq -P(x-z,\frac{\epsilon}{2})*-P(y-z,\frac{\epsilon}{2}) \\ &\geq P(z-x,\frac{\epsilon}{2})*-P(y-z,\frac{\epsilon}{2}) \\ &\geq P(0-(x-z),\delta+(\frac{\epsilon}{2}-\delta))*-P(y-z,\frac{\epsilon}{2}) \\ &\geq P(0,\frac{\epsilon}{2}-\delta)*P(x-z,\delta)*(-P(y-z,\frac{\epsilon}{2})) \\ &= 1*P(x-z,\delta)*(-P(y-z,\frac{\epsilon}{2})) \\ &= P(x-z,\delta)*(-P(y-z,\frac{\epsilon}{2})) \\ &= P(x-z,\delta)*(-P(y-z,\frac{\epsilon}{2})) \\ &> s'*s' > \alpha'. \end{aligned}$$

Hence $-P(x-y, \frac{\epsilon}{2}) > \alpha'$. Therefore $-P(x-y, \frac{\epsilon}{2}) > \alpha'_2$. Similarly $-Q(x-y, \frac{\epsilon}{2}) < 1 - \alpha'_2$, which is a contradiction.

Similarly there is a s-open sphere $\mathbf{N}'_s(y, \frac{\epsilon}{2})$ in $\mathfrak{S}_{P,Q}$ and $\mathbf{N}'_s(x, \frac{\epsilon}{2})$ in $\mathfrak{S}_{-P,-Q}$ such that $\mathbf{N}'_s(y, \frac{\epsilon}{2}) * \mathbf{N}'_s(x, \frac{\epsilon}{2}) = 0$.

Theorem 4.17. Let $(X, P, Q, *, \diamond)$ be an *i-f-q-p-n-NLS* along with an order inverting involution ' on I. Then $(A, \Im_{P,Q})$ is a T_2 -space if and only if P, Q is an intuitionistic fuzzy quasi n-norm on A.

Proof. Suppose P, Q is an intuitionistic fuzzy quasi *n*-norm on A. If $x, y \in A$ with $x \neq y$, then $P(x - y, t) \neq 1$ and $Q(x - y, t) \neq 0$ for some t. Suppose P(x - y, t) = r and Q(x - y, t) = 1 - r where 0 < r < 1. Now choose s > 0 such that s' * s' > r. Then $\mathbf{N}'_s(x, \frac{t}{2}) * \mathbf{N}'_s(y, \frac{t}{2}) = 1_{\phi}$. Hence $(A, \Im_{P,Q})$ is a T_2 -space.

Conversely, suppose that $(A, \mathfrak{F}_{P,Q})$ is a T_2 -space. Let $x \neq y$ in A. Then there exists $\mathfrak{F}_{P,Q}$ open sets μ_1, μ_2 such that $\mu_1(x) > 0, \mu_2(y) > 0$ with $\mu_1 * \mu_2 = 1_{\phi}, \mu_1 \diamond \mu_2 = 1_X$. Since $\mu_1(x) > 0, \mu_2(x) = 0$ and $\mu_2(y) > 0, \mu_1(y) = 0$. Hence $(A, \mathfrak{F}_{P,Q})$ is a T_1 -space and so by Theorem 4.15 P, Q is an intuitionistic fuzzy quasi *n*-norm on A.

Note 4.18. In general a T_2 -space need not be a T_1 -space. However if P, Q is an intuitionistic fuzzy quasi *n*-norm, then $(A, \mathfrak{P}_{P,Q})$ is a T_2 -space as well as a T_1 -space.

Theorem 4.19. Let $(X, P, Q, *, \diamond)$ be an *i*-*f*-*q*-*p*-*n*-*NLS* along with an order inverting involution ' on I. The *i*-*f*-*q*-*p*-*n*-norm P, Q is an intuitionistic fuzzy quasi *n*-norm if and only if the *I*-bitopological space $(A, \Im_{P,Q}, \Im_{-P,-Q})$ is pairwise Hausdorff.

Proof. Suppose $(A, \mathfrak{P}_{P,Q}, \mathfrak{P}_{-P,-Q})$ is a pairwise Hausdorff space. Then $\mathfrak{P}_{P,Q}$ and $\mathfrak{P}_{-P,-Q}$ are T_1 -topologies. Hence P, Q and -P, -Q are intuitionistic fuzzy quasi n-norms on A.

Conversely, suppose P, Q is an intuitionistic fuzzy quasi *n*-norm, then by Theorem 4.16, the *I*-bitopological space $(A, \Im_{P,Q}, \Im_{-P,-Q})$ is pairwise Hausdorff. \Box

Theorem 4.20. If P, Q and -P, -Q are two *i*-f-q-p-n-norms on A, then the I-bitopological space $(A, \mathfrak{F}_{P,Q}, \mathfrak{F}_{-P,-Q})$ is pairwise weakly Hausdorff if and only if P, Q and -P, -Q are intuitionistic fuzzy quasi n-norms.

Proof. Suppose $(A, \mathfrak{P}_{P,Q}, \mathfrak{P}_{-P,-Q})$ is pairwise weakly Hausdorff space, then $\mathfrak{P}_{P,Q}$ and $\mathfrak{P}_{-P,-Q}$ are T_1 -topologies. Hence P, Q and -P, -Q are intuitionistic fuzzy quasi *n*-norms on A.

Conversely, suppose P, Q and -P, -Q are intuitionistic fuzzy quasi *n*-norms on A, then $\mathfrak{I}_{P,Q}$ and $\mathfrak{I}_{-P,-Q}$ are T_2 -topologies. Let x and y be two distinct points in A. Then $\exists \mu_1(x) > 0$ and $\mu_2(y) > 0$ such that $\mu_1 * \mu_2 = 1_{\phi}$ and $\exists \mu_3$ and μ_4 in \mathfrak{I}_{P_1,Q_1} with $\mu_3(x) > 0$ and $\mu_4(y) > 0$ such that $\mu_3 * \mu_4 = 1_{\phi}$. It is enough if we show that $\mu_1 * \mu_4 = 1_{\phi}$ or $\mu_2 * \mu_3 = 1_{\phi}$. Clearly $(\mu_1 * \mu_4)(x) = 0$, $(\mu_1 * \mu_4)(y) = 0, (\mu_2 * \mu_3)(x) = 0, (\mu_2 * \mu_3)(y) = 0$. Suppose there exists an element $z \in A$ such that $(\mu_1 * \mu_4)(z) \neq 0$. Then $\mu_1(z) > 0$ and $\mu_4(z) > 0$ and so $\mu_2(z) = 0, \mu_3(z) = 0$ and hence we conclude that $\mu_1 * \mu_4 = 1_{\phi}$ or $\mu_2 * \mu_3 = 1_{\phi}$. \Box

Note 4.21. In general, a pairwise weakly Hausdorff space need not be a pairwise Hausdorff space. However if P, Q is an intuitionistic fuzzy quasi *n*-norm, then

 $(A, \mathfrak{P}_{P,Q}, \mathfrak{P}_{-P,-Q})$ is a pairwise weakly Hausdorff as well as a pairwise Hausdorff space as proved in the following.

Theorem 4.22. $(A, \mathfrak{P}_{P,Q}, \mathfrak{P}_{-P,-Q})$ is a pairwise weakly Hausdorff space if and only if $(A, \mathfrak{P}_{P,Q}, \mathfrak{P}_{-P,-Q})$ is a pairwise Hausdorff space.

Proof. Suppose $(A, \Im_{P,Q}, \Im_{-P,-Q})$ is a pairwise weakly Hausdorff space, then $\Im_{P,Q}$ or $\Im_{-P,-Q}$ is a T_2 -space. Hence by Theorem 4.17, P,Q is an intuitionistic fuzzy quasi *n*-norm and so by Theorem 4.19 $(A, \Im_{P,Q}, \Im_{-P,-Q})$ is a pairwise Hausdorff space.

Conversely, suppose $(A, \Im_{P,Q}, \Im_{-P,-Q})$ is a pairwise Hausdorff space, then trivially it is a pairwise weakly Hausdorff space.

Acknowledgements: The authors are thankful to the reviewers for their critical comments and suggestions, which have greatly helped in improving the quality of the paper.

References

- T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11(3)(2003), 687–705.
- [2] _____, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151(2005), 513-547.
- [3] _____, Product fuzzy normed linear spaces, J. Fuzzy Math., 13(3)(2005), 545–565.
- [4] S.C. Chang and J.N. Mordesen, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Cal. Math. Soc., 86(1994), 429–436.
- [5] N.R. Das, Pankajadas, Fuzzy topology generated by fuzzy norm, *Fuzzy Sets and Systems*, 107(1999), 349–354.
- [6] C. Felbin, The Completion of fuzzy normed linear space, J. Math. Anal. and Appl., 174(2)(1993), 428–440.
- [7] _____, Finite dimensional fuzzy normed linear spaces II, Journal of Analysis, 7(1999), 117–131.

- [8] S.Gähler, Lineare 2-Normierte Räume, Math. Nachr., 28(1965), 1–43.
- [9] _____, Unter Suchungen Über Veralla gemeinerte m-metrische Räume I, Math. Nachr., (1969), 165–189.
- [10] A. George and P. Veeramani, On some results in fuzzy vector space, Fuzzy Sets and Systems, 64(1994), 395–399.
- [11] H. Gunawan and M. Mashadi, On n-Normed spaces, Int. J. Math. & Math. Sci., 27(10)(2001), 631–639.
- [12] A.K. Katsaras and D.B. Liu, Fuzzy vector spaces and fuzzy topological spaces, J. Math. Anal. and Appl., 58(1977), 135–156.
- [13] S.S. Kim and Y.J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math., 29(4)(1996), 739–744.
- [14] O. Kramosil and J. Michalak, Fuzzy metric and statistical metric spaces, *Kybernetica*, **11**(1975), 326–334.
- [15] R. Malceski, Strong n-convex n-normed spaces, Mat. Bilten, 21(1997), 81– 102.
- [16] AL. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear space, Int. J. Math. & Math. Sci., 24(2005), 3963–3977.
- [17] AL. Narayanan, S. Vijayabalaji and N. Thillaigovindan, Intuitionistic fuzzy bounded linear operators, *Iranian J. Fuzzy Systems*, 4(1)(2007), 89–101.
- [18] B. Schweizer and A. Sklar , Statistical metric spaces, Pacific J. Maths., 10(1960), 314–334.
- [19] T. Tamizh Chelvam and A. Singadurai, I-Topological Vector Spaces Generated by F-norm, J. Fuzzy Math., 14(2)(2006), 255–265.
- [20] T. Tamizh Chelvam and A. Singadurai, I-bitopological Space Generated by Fuzzy norm, J. Fuzzy Math., 16(2)(2008), 483–494.

N. Thillaigovindan Department of Mathematics,

32

Annamalai University, Annamalainagar-608002, Tamilnadu, India Email: thillai_n@sify.com

Iqbal Jebril Department of Mathematics, Faculty of Science, King Faisal Universty, P.O.Box 2600- Hufuf, Hasa 31982, Saudi Arabia Email: iqbal501 hotmail.com

S. Anita Shanthi Department of Mathematics, Annamalai University, Annamalainagar-608002, Tamilnadu, India Email: shanthi.anita@yahoo.com