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Abstract: In this paper, we obtained the general solution for the functional

equation

(∆2

x,h1
f)(x, y, t) + (∆2

y,h2
f)(x, y, t) = (∆2

t,h3
f)(x, y, t)

analogous to 2-dimensional wave equation.
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1 Introduction

In 1988, S. Haruki [2] investigated the functional equation

f(x+ t, y) − 2f(x, y) + f(x− t, y)

t2
=
f(x, y + s) − 2f(x, y) + f(x, y − s)

s2
(1)

analogous to the one-dimensional wave equation

∂2u

∂x2
=
∂2u

∂y2
,

∗Corresponding author
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and obtained the general solution

f(x, y) = c0 + c1(x
2 + y2) + c2(x

3 + 3xy2) + c3(y
3 + 3x2y) + c4(x

3y + xy3)

+A1(x) +A2(y) +B(x, y).

In this paper, we will find all functions f : R3 → R which satisfy the functional

equation

f(x+ h1, y, t) − 2f(x, y, t) + f(x− h1, y, t)

h2

1

+
f(x, y + h2, t) − 2f(x, y, t) + f(x, y − h2, t)

h2

2

=
f(x, y, t+ h3) − 2f(x, y, t) + f(x, y, t− h3)

h2

3

(2)

for all x, y, t ∈ R and h1, h2, h3 ∈ R \ {0} . Note that Eq.(2) can be viwed as an

analogue of the 2-dimensional wave equation

∂2u

∂x2
+
∂2u

∂y2
=
∂2u

∂t2
.

2 Preliminaries

In order to better understand the functional equation (2) and to elucidate the

analogue between differential equations and functional equations, we will define

the difference operator ∆h for a function f : R → R by

∆hf(x) =
f(x+ h

2
) − f(x− h

2
)

h

for all x ∈ R and h ∈ R \ {0} .

For a function f : R3 → R , we will define

∆x,hf(x, y, t) =
f(x+ h

2
, y, t) − f(x− h

2
, y, t)

h

∆y,hf(x, y, t) =
f(x, y + h

2
, t) − f(x, y − h

2
, t)

h

∆t,hf(x, y, t) =
f(x, y, t+ h

2
) − f(x, y, t− h

2
)

h
.

An iterative of the operator ∆h is simply defined by

∆n
h = ∆h(∆n−1

h ).
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It should be noted that

∆2

hf(x) =
f(x+ h) − 2f(x) + f(x− h)

h2
.

Now equation (1) and (2) can be written succinctly as

∆2

x,tf(x, y) = ∆2

y,sf(x, y) (3)

and ∆2

x,h1
f(x, y, t) + ∆2

y,h2
f(x, y, t) = ∆2

t,h3
f(x, y, t) (4)

respectively.

Haruki [2] gave a remarkable lemma that will be fruitful to our work; that is,

he solved the functional equation ∆2

yψ(x) = ϕ(x) which simply states that the

second-order difference is independent of the span.

Lemma 2.1. (Haruki) Two functions ψ,ϕ : R → R satisfy the equation

∆2

yψ(x) = ϕ(x)

for all x ∈ R and y ∈ R \ {0} if and only if there exists an additive function

A : R → R and a1, a2, a3 ∈ R such that

ψ(x) = a1 +A(x) + a2x
2 + a3x

3,

ϕ(x) = 2a2 + 6a3x. �

Please recall that an additive function A : R → R possesses the additive

property,

A(x+ y) = A(x) +A(y)

for all x, y ∈ R .

Haruki applied Lemma 2.1 to the functional equation (3) and obtained the

following result:

Theorem 2.2. (Haruki) A function f : R2 → R satisfies ∆2

x,tf(x, y) = ∆2

y,sf(x, y)

for all x, y ∈ R and s, t ∈ R \ {0} if and only if

f(x, y) = a0 + a1(x
2 + y2) + a2(3x

2y + y3) + a3(3xy
2 + x3) + a4(x

3y + xy3)

+A1(x) +A2(y) +B(x, y)

where a0, a1, a2, a3, a4 are constants, A1, A2 are additive functions and B is a

bi-additive function.
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Please be reminded that a function B : R2 → R will be bi-additive when it is

additive in each variable; that is,

B(x1 + x2, y) = B(x1, y) +B(x2, y)

and B(x, y1 + y2) = B(x, y1) +B(x, y2)

for all x, y ∈ R .

In addition, a function f : R3 → R will be called 3-additive if it is additive in

each variable.

3 Main result

In order to solve the functional equation

∆2

x,h1
f(x, y, t) + ∆2

y,h2
f(x, y, t) = ∆2

t,h3
f(x, y, t)

we will first state the following lemma.

Lemma 3.1. Let g : R2 → R and f : R3 → R be functions such that f is additive

in the first variable. Then f and g will satisfy the following system of equations

∆2

y,h1
g(y, t) = ∆2

t,h2
g(y, t)

xg(y, t) + ∆2

y,h1
f(x, y, t) = ∆2

t,h2
f(x, y, t) (5)

if and only if

f(x, y, t) = C0(x) + (y2 + t2)C1(x) + (t3 + 3y2t)C2(x) + (y3 + 3yt2)C3(x)

+ (yt3 + y3t)C4(x) + b0xt
2 +A1(x, t) +A2(x, y) +A3(x, y, t)

+ xt2B1(y) + xt3B3(y) − xy2B2(t) − xy3B4(t) (6)

g(y, t) = 2b0 + 2B1(y) + 2B2(t) + 6tB3(y) + 6yB4(t) (7)

where B1, B2, B3, B4 and C1, C2, C3, C4 are additive functions, A1, A2 are bi-

additive, A3 is 3-additive and b0 is a constant.

Proof. By Theorem 2.2, the function g is given by

g(y, t) = b0 + b1(y
2 + t2) + b2(y

3 + 3yt2) + b3(t
3 + 3y2t) + b4(y

3t+ yt3)

+B1(y) +B2(t) +B∗(y, t), (8)
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where b0, b1, . . . , b4 are constants, B1, B2 are additive and B∗ is bi-additive. From

Eq.(5), we can see that ∆2

y,h1
f(x, y, t) = ∆2

t,h2
f(x, y, t) − xg(y, t) which is inde-

pendent of the span h1 . Thus, by Lemma 2.1, we have

f(x, y, t) = D0(x, t) +D1(x, y, t) + y2D2(x, t) + y3D3(x, t), (9)

where D1 is additive in the second variable. Substitute Eq.(8) and Eq.(9) back

into Eq.(5),

x
(

b0 + b1(y
2 + t2) + b2(y

3 + 3yt2) + b3(t
3 + 3y2t) + b4(y

3t+ yt3)

+B1(y) +B2(t) +B∗(y, t)
)

+ 2D2(x, t) + 6yD3(x, t)

= ∆2

t,h3
(D0(x, t) +D1(x, y, t) + y2D2(x, t) + y3D3(x, t)). (10)

Observe that for arbitrary r ∈ Q , substituting ry for y in Eq.(10), we obtain a

polynomial of variable r with all rational numbers being its roots. Hence all the

coefficients of the polynomial (in terms of the variable r ) must vanish, that is,

b0x+ b1xt
2 + b3xt

3 + xB2(t) + 2D2(x, t) = ∆2

t,h2
D0(x, t), (11)

3b2xyt
2 + b4xyt

3 + xB1(y) + xB∗(y, t) + 6yD3(x, t) = ∆2

t,h2
D1(x, y, t), (12)

b1xy
2 + 3b3xy

2t = ∆2

t,h2
y2D2(x, t), (13)

b2xy
3 + b4xy

3t = ∆2

t,h2
y3D3(x, t), (14)

From Eq.(13), using Lemma 2.1, we will have

D2(x, t) = C1(x) + E1(x, t) +
b1

2
xt2 +

b3

2
xt3, (15)

where E1 is additive in the second variable. Substitute Eq.(15) into Eq.(11) to

get

∆2

t,h2
D0(x, t) = b0x+ 2C1(x) + xB2(t) + 2E1(x, t) + 2b1xt

2 + 2b3xt
3. (16)

By Lemma 2.1, the right-hand side of (16) must be a polynomial of degree 1 in

the variable t . Therefore, b1 = 0 = b3 and xB2(t) + 2E1(x, t) = tC2(x) for some

C2 : R → R . Moreover, D0 must be of the form,

D0(x, t) = C0(x) +A1(x, t) +
b0x+ 2C1(x)

2
t2 +

C2(x)

6
t3 (17)

where A1 is additive in the second variable. Since b1 = 0 = b3 , Eq.(15) becomes

D2(x, t) = C1(x) + E1(x, t) = C1(x) +
tC2(x) − xB2(t)

2
. (18)
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Similarly, from Eq.(14) and Lemma 2.1, we get

D3(x, t) = C3(x) + E2(x, t) +
b2

2
xt2 +

b4

6
xt3, (19)

with E1 additive in the second variable. By Eq.(12) and (19), we obtain

∆2

t,h2
D1(x, y, t) = xB1(y) + 6yC3(x) + xB∗(y, t) + 6yE2(x, t) + 6b2xyt

2 + 2b4xyt
3

By Lemma 2.1, as before, b2 = 0 = b4 , xB∗(y, t) + 6yE2(x, t) = tE3(x, y) and

D1(x, y, t) = A2(x, y) +A3(x, y, t) +
xB1(y) + 6yC3(x)

2
t2 +

E3(x, y)

6
t3 (20)

and Eq.(19) becomes

D3(x, t) = C3(x) + E2(x, t) (21)

where A3 is additive in the third variable. Note that E3 is additive in the second

variable since E3(x, y) = xB∗(y, 1) + 6yE2(x, 1). If we substitute t = 0 into

Eq.(20), we can see that A2(x, y) = D1(x, y, 0) which is additive in the second

variable. From Eq.(20), all functions other that A3 are additive in the second

variable. Hence, A3 must also be additive in the second variable.

Gathering all we have so far and substituting Eqs.(17), (18), (20) and (21) into

Eq.(9)

f(x, y, t) = C0(x) +A1(x, t) +
b0x+ 2C1(x)

2
t2 +

C2(x)

6
t3

+A2(x, y) +A3(x, y, t) +
xB1(y) + 6yC3(x)

2
t2 +

E3(x, y)

6
t3

+ y2(C1(x) +
tC2(x) − xB2(t)

2
) + y3(C3(x) + E2(x, t))

= C0(x) + (y2 + t2)C1(x) + (t3 + 3y2t)
C2(x)

6
+ (y3 + 3yt2)C3(x)

+
b0

2
xt2 +A1(x, t) +A2(x, y) +A3(x, y, t)

+ xt2
B1(y)

2
+ t3

E3(x, y)

6
− xy2

B2(t)

2
+ y3E2(x, t) (22)

g(y, t) = b0 +B1(y) +B2(t) + tE3(1, y) − 6yE2(1, t) (23)

Now that we have obtained g , we will show that each function in Eq.(22) is

additive in the first variable. Since C0(x) = f(x, 0, 0), we have that C0 is additive.

If we substitute t = 0 into Eq.(22), we have that

ϕy(x) ≡ y2C1(x) + y3C3(x) +A2(x, y) = f(x, y, 0) − C0(x)
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where we have defined ϕy(x) to be the term on the left-hand side of the above

equation. Since f(x, y, 0) − C0(x) is an additive function of x , ϕy(x) is also an

additive function of x . One can verify that

C1(x) = −
5

2
ϕ1(x) + 2ϕ2(x) −

1

2
ϕ3(x),

C3(x) =
1

2
ϕ1(x) −

1

2
ϕ2(x) +

1

6
ϕ3(x),

A2(x, y) = 3ϕy(x) −
3

2
ϕ2y(x) +

1

3
ϕ3y(x).

Hence C1 and C3 are additive and A2 is bi-additive (note that A2 is already

additive in the second variable). For other functions in Eq. (22), we can show in

a similar way that each of them is additive in the first variable.

Now we substitute Eq.(22) and Eq.(23) into Eq.(5), we get

tE3(x, y) − xtE3(1, y) = 6yE2(x, t) − 6xyE2(1, t). (24)

Define T (x, y) = E3(x, y) − xE3(1, y). By Eq.(24), we have

T (x, y) = 6yE2(x, 1) − 6xyE2(1, 1) = yC4(x),

where C4(x) = 6E2(x, 1) − 6xE2(1, 1). Note that C4 is additive. From the

definition of T , we get

tE3(x, y) = xtE3(1, y) + ytC4(x). (25)

From Eqs.(24) and (25), we obtain

6yE2(x, t) = 6xyE2(1, t) + ytC4(x). (26)

Substituting Eqs.(25) and (26) into Eq.(22), we get the functional equation f and

g as in Eqs.(6) and (7).

Conversely, if f and g are given by Eqs.(6) and (7), respectively, then it can

be verified that (5) holds. This completes the proof.

Corollary 3.2. Let f, g : R2 → R such that g satisfies Eq.(3). Then

g(y, t) + ∆2

y,h1
f(y, t) = ∆2

t,h2
f(y, t) (27)
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if and only if

f(y, t) = a0 + a1(y
2 + t2) + a2(t

3 + 3y2t) + a3(y
3 + 3yt2)

+ a4(yt
3 + y3t) + b0t

2 +A1(t) +A2(y) +A3(y, t)

+ t2B1(y) + t3B3(y) − y2B2(t) − y3B4(t)

g(y, t) = 2b0 + 2B1(y) + 2B2(t) + 6tB3(y) + 6yB4(t)

where a0, a1, . . . , a4, b0 are constants, A1, A2, B1, B2, B3, B4 are additive functions

and A3 is 3-additive.

Proof. Multiplying Eq.(27) by x , we get

xg(y, t) + ∆2

y,h1
xf(y, t) = ∆2

t,h2
xf(y, t).

Define f∗(x, y, t) = xf(y, t). The above equation then becomes

xg(y, t) + ∆2

y,h1
f∗(x, y, t) = ∆2

t,h2
f∗(x, y, t)

Applying Lemma 3.1 and using the fact that f(y, t) = f∗(1, y, t), we get the

desired conclusion.

Now that we have Lemma 3.1, we are ready to solve Eq.(4).

Theorem 3.3. A function f : R3 → R satisfy (4) if and only if

f(x, y, t) = a0 + (A1(x) + a1)(y
2 + t2) + (A2(x) + a2)(t

3 + 3y2t)

+ (A3(x) + a3)(y
3 + 3yt2) + (A4(x) + a4)(y

3t+ yt3)

+ (A5(y) + a5)(x
2 + t2) + (A6(y) + a6)(x

3 + 3xt2)

+ (A7(y) + a7)(t
3 + 3x2t) + (A8(y) + a8)(x

3t+ xt3)

+ (A9(t) + a9)(x
2 − y2) + (A10(t) + a10)(y

3 − 3x2y)

+ (A11(t) + a11)(x
3y − xy3) + (A12(t) + a12)(x

3 − 3xy2) +A13(x)

+A14(t) +A15(y) +B1(x, y) +B2(y, t) +B3(x, t) + T3(x, y, t)

where a1, a2, . . . , a12 are constants, A1, A2, . . . , A15 are additive, B1, B2, B3 ’s are

bi-additive and T is 3-additive.

Proof. Firstly, we put h2 = 1 = h3 in Eq.(4) and then apply Lemma 2.1. We

obtain

f(x, y, t) = A(y, t) +B(x, y, t) + x2C(y, t) + x3D(y, t) (28)
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where B is additive in the first variable. Substitute Eq.(28) into Eq.(4), we have

2C(y, t) + 6xD(y, t) + ∆2

y,h2
(A(y, t) +B(x, y, t) + x2C(y, t) + x3D(y, t))

= ∆2

t,h3
(A(y, t) +B(x, y, t) + x2C(y, t) + x3D(y, t)).

If we replace x with rx , where r ∈ Q , we will get a polynomial of r with infinite

number of roots, and hence all of its coefficients must be zero;

2C(y, t) + ∆2

y,h2
A(y, t) = ∆2

t,h3
A(y, t), (29)

6xD(y, t) + ∆2

y,h2
B(x, y, t) = ∆2

t,h3
B(x, y, t), (30)

x2∆2

y,h2
C(y, t) = x2∆2

t,h3
C(y, t), (31)

x3∆2

y,h2
D(y, t) = x3∆2

t,h3
D(y, t). (32)

Applying Corollary 3.2 to Eq.(29) and Eq.(31), we have

A(y, t) = a0 + a1(y
2 + t2) + a2(t

3 + 3y2t) + a3(y
3 + 3yt2) + a4(y

3t+ yt3) + c0t
2

+A1(t) +A2(y) +A3(y, t) + t2C1(y) + t3C3(y) − y2C2(t) − y3C4(t)

C(y, t) = c0 + C1(y) + C2(t) + 3tC3(y) + 3yC4(t)

and when applying Lemma 3.1 to Eq.(30) and Eq.(32), we obtain

B(x, y, t) = B0(x) + (y2 + t2)B1(x) + (t3 + 3y2t)B2(x) + (y3 + 3yt2)B3(x),

+ (y3t+ yt3)B4(x) + 3d0xt
2 + E1(x, t) + E2(x, y) + E3(x, y, t),

+ 3xt2D1(y) + 3xt3D3(y) − 3xy2D2(t) − 3xy3D4(t),

D(y, t) = d0 +D1(y) +D2(t) + 3tD3(y) + 3yD4(t). (33)

Now we have

f(x, y, t) = a0 + (B1(x) + a∗
1
)(y2 + t2) + (B∗

2
(x) + a∗

2
)(t3 + 3y2t)

+ (B3(x) + a∗
3
)(y3 + 3yt2) + (B4(x) + a4)(y

3t+ yt3)

+ (C∗

1
(y) + c∗

0
)(x2 + t2) + (D1(y) + d∗

0
)(x3 + 3xt2)

+ (C3(y) + k1)(t
3 + 3x2t) + (3D3(y) + k2)(x

3t+ xt3)

+ (C∗

2
(t) + k3)(x

2 − y2) − (C4(t) + k4)(y
3 − 3x2y)

+ (D∗

2
(t) + k5)(x

3 − 3xy2) + (3D4(t) + k6)(x
3y − xy3)

+B0(x) +A1(t) +A2(y) + E2(x, y) +A3(y, t) + E1(x, t) + E3(x, y, t)
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where we have defined

C2(t)
∗ = C2(t) − 3k1(t), a∗

2
= a2 − k1,

D∗

2
(t) = D2(t) − k2t, B∗

2
(x) = B2(x) − k2x,

c∗
0

= c0 − k3 a∗
1
, = a1 + k3,

a∗
3

= a3 + k4 + k6, C∗

1
(y) = C1(y) − 3k4y,

d∗
0

= d0 − k5 − k6, B∗

1
(x) = B1(x) + 3k5x.

It is straightforward to verify that the function of the above form is indeed the

general solution of Eq.(4)

The next corollary extends our result to a difference functional equation anal-

ogous to the wave equation

∂2u

∂x2
+
∂2u

∂y2
=

1

c2
∂2u

∂t2
.

Corollary 3.4. Let f1, f2 : R3 → R and c ∈ R \ {0} such that f2(x, y, t) =

f1(x, y, ct) . Then f1 satisfies Eq.(4) if and only if f2 satisfies the equation

c2(∆2

x,h1
f(x, y, t) + ∆2

y,h2
f(x, y, t)) = ∆2

t,h3
f(x, y, t). (34)

Proof. Observe that

c2((∆2

1,h1
f2)(x, y, t) + (∆2

2,h2
f2)(x, y, t)) − (∆2

3,h3
f2)(x, y, t)

= c2((∆2

1,h1
f2)(x, y, t) + (∆2

2,h2
f2)(x, y, t))

− (
f2(x, y, t+ h3) − 2f2(x, y, t) + f2(x, y, t− h3)

h2

3

)

= c2((∆2

1,h1
f1)(x, y, ct) + (∆2

2,h2
f1)(x, y, ct))

− c2(
f1(x, y, ct+ ch3) − 2f1(x, y, ct) + f1(x, y, ct− ch3)

(ch3)2
)

= c2((∆2

1,h1
f1)(x, y, t

′) + (∆2

2,h2
f1)(x, y, t

′)) − c2(∆2

3,h′

3

f1)(x, y, t
′)

where t′ = ct and h′
3

= ch3 . Hence f1 satisfies Eq.(4) if and only if f2 satisfies

Eq.(34).
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