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Abstract: Let A and A be Banach algebras, and let A be a Banach A-bimodule.

In this paper, at first we generalize some theorems from amenable Banach algebras

into module amenable Banach algebras. We show that when A and I are com-

mutative Banach A-bimodules, and A is module amenable, where I is two-sided

closed ideal in A , then I is module amenable. By this, we show that if I is a two

sided ideal in an amenable inverse semigroup S , then I is amenable.
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1 Introduction

The concept of amenability for Banach algebras was introduced by Johnson in

1972 [8]. The Banach algebra A is said to be amenable if H1(A,X ∗) = {0} for

all Banach A -bimodule X , such that X ∗ is the first dual of X .

In [1], Amini introduced the concept of module amenability of Banach algebras.

He showed that under some natural conditions, for an inverse semigroup S with

the set of idempotents ES , `1(S) is `1(ES)-module amenable if and only if S is

amenable. Amini and Bodaghi studied this version of amenability in [2].

For an amenable Banach algebra A , every closed ideal I is amenable if and only

if I has a bounded approximate identity if and only if I is weakly complemented

in A (Theorem 2.3.7 of [13]). Zhang in [14], showed that if I is approximately

complemented in A , then the above results are hold.
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In the next section, we prove a similar Theorem to Theorem 2.3.7 of [13] for

module amenability of Banach algebras. By this Theorem we prove that if S be

an amenable inverse semigroup, and I is an ideal in S , then I is also amenable.

This proof is different from to prove of Corollary 1.22 of [10].

2 Module Amenability of Banach Algebras

Let A and A be Banach algebras such that A is a Banach A-bimodules with

following compatible actions

α.(ab) = (α.a)b, a(α.b) = (a.α)b, (2.1)

and

(ab).α = a(b.α), (a.α)b = a(α.b), (2.2)

for every a, b ∈ A, α ∈ A . Let A and B be Banach A-bimodules with compatible

actions. An A-module map is a mapping ϕ : A −→ B with following properties

1. ϕ(a ± b) = ϕ(a) ± ϕ(b);

2. ϕ(α.a) = α.ϕ(a);

3. ϕ(a.α) = ϕ(a).α ,

for every a, b ∈ A, α ∈ A . Note that ϕ is not linear. Let X be a Banach A -

bimodule and a Banach A-bimodule with following compatible actions

α.(a.x) = (α.a).x, a(α.x) = (a.α).x, (α.x).a = α.(x.a), (2.3)

and

(a.x).α = a.(x.α), (a.α).x = a.(α.x), (x.a).α = x.(a.α), (2.4)

for every x ∈ X , a ∈ A, α ∈ A . Then by this actions X is a Banach A -A-

bimodule. If α.x = x.α , for every x ∈ X and α ∈ A , then X is called a

commutative Banach A -A-bimodule. Moreover, if a.x = x.a , for every x ∈ X

and α ∈ A , then X is called a bi-commutative Banach A -A-bimodule. It is clear

that A is a Banach A -A-bimodule. Also if A is a commutative A-bimodule, then

A is a bi-commutative A -A-bimodule. Similarly, dual, second dual and n -dual of

A are commutative or bi-commutative A -A-bimodules. X is called A -essential

if XAX = X .
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An A-module map D : A −→ X is called a module derivation if

D(ab) = a.D(b) + D(a).b (a.b ∈ A). (2.5)

The module derivation D is called bounded if there exists M > 0 such that

‖D(a)‖ ≤ M‖a‖ , for every a ∈ A . Note that boundedness of D implies its norm

continuity.

Definition 2.1. The Banach algebra A is called module amenable (as an A-

bimodule) if for any commutative Banach A -A-bimodule X , each module deriva-

tion D : A −→ X ∗ is inner.

Similarly to amenability, we use the notations Z1
A
(A,X ∗) for the set of all

module derivations D : A −→ X ∗ , and N1
A
(A,X ∗) for those which are inner. We

consider the quotient space H1
A
(A,X ∗) = Z1

A
(A,X ∗)/N1

A
(A,X ∗) called the first

relative (to A) Hochschild cohomology group of A with coefficients in X ∗ . Hence

A is module amenable if and only if H1
A
(A,X ∗) = Z1

A
(A,X ∗)/N1

A
(A,X ∗) = {0} ,

for each commutative Banach A -A-bimodule X .

Let A and X be Banach algebras; let A be a commutative Banach A-

bimodule, and let X be a Banach A -A-bimodule. If I is a left ideal in A ,

such that I is a commutative Banach A-bimodule, and D : I −→ X is a module

derivation. Then for each a ∈ I , the map

Da : x 7→ D(ax) − a.Dx, I −→ X , (2.6)

is a right I -module homomorphism (Proposition 1.8.3 of [4]), and clearly is a A-

module map. A left (right) multiplier on A is an element L (or R) in L(A) such

that L(ab) = L(a)b (R(ab) = aR(b)), for each a, b ∈ A . A multiplier is a pair

(L,R), where L and R are left and right multipliers on A , respectively, and

aL(b) = R(a)b (a, b ∈ A)

The sets of left multipliers, right multipliers, and multipliers on A are denoted

by Ml(A), Mr(A), and M(A), respectively. They are subalgebras of L(A),

L(A)op , and L(A) × L(A)op , respectively.

Suppose that A is an ideal in a Banach algebra B , and b ∈ B . The map θ :

B −→ M(A) defined by θ(b) = (Lb, Rb) is a homomorphism, where Lb : a 7→ ba ,

and Rb : a 7→ ab on A . This homomorphism is called regular homomorphism (for

more details see p. 60 of [4]). It is clear that if both A and B are commutative

Banach A-bimodule, then θ is a A-module map.
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Now let A be a Banach A-bimodule with a bounded approximate identity,

let X be an A -essential, and commutative A-bimodule. Then X by following

module actions

(L,R).(a.x) = La.x, (x.a).(L,R) = x.Ra (a ∈ A, (L,R) ∈ M(A), x ∈ X )

(2.7)

is a unital Banach M(A)-bimodule (Theorem 2.9.51 of [4]). Also we have

x.La = (x.µ).a, Ra.x = a.(µ.x), (2.8)

for each a ∈ A , µ = (L,R) ∈ M(A), x ∈ X . By easy argument M(A) is a

A-bimodule.

Theorem 2.2. Let A be a commutative Banach A-bimodule, let X be a A-

essential module and a commutative A-bimodule. Suppose that D : A −→ X ∗ is

a module derivation, then there is a unique module derivation D̃ : M(A) −→ X ∗

such that D̃|A = D . If D is inner then D̃ is also inner. Moreover, if D is

bounded then D̃ is also bounded.

Proof. Let (eα) be a bounded approximate identity for A . By (2.7) X , and hence

X ∗ , are unital A -bimodules. Take µ = (L,R) ∈ M(A), and define

Dµ : a 7→ D(µ.a) − µ.D(a), A −→ X ∗. (2.9)

By (2.6), Dµ is a right A -module homomorphism, and so it is continuous

(Theorem 2.9.30 (ix) of [4]). Therefore the bounded net (Dµeα) has a accumu-

lation point, λ , in w -topology. Since X is essential in A , so take x = a.y ∈ X ,

where a ∈ A and y ∈ X . Then

〈x,Dµeα〉 = 〈y,Dµeα.a〉 = 〈y,Dµ(eα.a)〉 −→ 〈y,Dµa〉,

and so 〈x, λ〉 = 〈y,Dµa〉 . Note that λ is independent of the choice of the bounded

approximate identity. Set D̃µ = λ . Then we have

〈y,Dµa〉 = 〈a.y, D̃µ〉 = 〈y, D̃µ.a〉 (y ∈ X , a ∈ A),

therefore we can write

D̃µ.a = Dµa = D(µ.a) − µ.Da (a ∈ A).
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Since A is a commutative A-bimodule, and M(A) is a A-bimodule, so for

every γ ∈ A we have

D̃(γ.µ).a = Dγ.µa = D(γ.µ.a) − γ.µ.Da

= γ.D̃µ.a,

and

D̃(µ.γ).a = Dµ.γa = D(µ.γ.a) − µ.γ.Da

= D̃µ.a.γ.

Therefore D̃ is an A-module map. Let µ1 = (L1, R1) and µ2 = (L2, R2) in

M(A). Then for each a ∈ A we have

D̃(µ1µ2).a = Dµ1µ2
a = D(µ1µ2.a) − µ1µ2.D(a)

= D(µ1.L2a) − µ1µ2.D(a) = Dµ1
(L2a) + µ1.Dµ2

a

= Dµ1
(µ2.a) + µ1.Dµ2

a = D̃µ1.µ2.a + µ1.D̃µ2.a

= (D̃µ1.µ2 + µ1.D̃µ2).a.

So, by X = XAX , we have D̃(µ1µ2) = D̃µ1.µ2 + µ1.D̃µ2 , and since D̃ is an

A-module map, hence D̃ is a module derivation. Let a ∈ A , and set µ = (La, Ra).

Then

D̃µ.b = Dµb = D(ab) − a.Db = Da.b (b ∈ A).

Thus D̃µ = Da , and this means D̃|A = D . By existing of bounded approxi-

mate identity (eα) in A , we can show that D̃ is unique and it is easy.

Suppose that D : A −→ X ∗ is an inner module derivation. Therefore there

exists λ ∈ X ∗ such that D(a) = a.λ−λ.a , for each a ∈ A . Then the inner module

derivation

µ 7→ µ.λ − λ.µ, M(A) −→ X ∗

is a module derivation, which extends D . Since the extend of D is unique, hence

D̃µ = µ.λ − λ.µ , for each µ ∈ M(A).

If we suppose that D is a bounded module derivation, then there is a M > 0

such that ‖Da‖ ≤ M‖a‖ . Then for every a ∈ A and µ ∈ M(A) we have

‖D̃µ.a‖ = ‖Dµa‖ ≤ 2‖D‖‖a‖‖µ‖ ≤ 2M‖a‖‖µ‖.

Thus D̃ is bounded.
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We denote the space of all bounded A-module maps from G into F by

BA(G,F ), where F and G are commutative Banach A-bimodules. Now, Let

A be a Banach A-bimodule, and Let G and F be Banach left (right) A -modules,

and commutative Banach A-bimodules. By ABA(G,F ) (BA,A(G,F )) we mean all

bounded left (right) A -module homomorphisms, and A-module homomorphisms

from G into F . It is clear that BA(G,F ), ABA(G,F ) and BA,A(G,F ) are Banach

A -bimodules.

Consider the following short exact sequence of Banach left A -modules, and

commutative Banach A-bimodules:

∑
: 0 −→ E

S
−→ F

T
−→ G −→ 0.

Where S and T are in ABA(G,F ). Then,
∑

is splits strongly if and only if

T is a retraction (there is a Q ∈ ABA(F,G) such that T ◦ Q = idG ).

Proposition 2.3. Let A be a module amenable Banach algebra, let E be a Banach

right A-module, and commutative Banach A-bimodule. Let F and G be Banach

left A-modules, and commutative Banach A-bimodules. Then each admissible

short exact sequence of commutative Banach A-A-bimodules

∑
: 0 −→ E∗ S

−→ F
T

−→ G −→ 0

splits strongly.

Proof. Since
∑

is admissible, then there is a Q1 ∈ BA(G,F ) with T ◦Q1 = idG .

Since BA(G,F ) is a commutative Banach A -A-bimodule. Define D : A −→

BA(G,F ) with D(a) = a.Q1 − Q1.a . Thus D is a bounded module derivation,

and for each a ∈ A and z ∈ G we have

(T ◦ Da)(z) = T (a.Q1z − Q1(a.z))

= a.(T ◦ Q1)(z) − (T ◦ Q1)(a.z) = a.z − a.z = 0.

Therefore (Da)(G) ⊂ ker T = S(E∗). Without less of generality we suppose

that S(E∗) = E∗ . Hence D : A −→ BA(G,E∗) is a bounded module derivation,

and since BA(G,E∗) is a dual commutative Banach A -A-bimodule, then there

exists Q2 ∈ BA(G,E∗) with Q2(G) ⊂ ker T , and Da = a.Q2 − Q2.a . Set Q =

Q1 − Q2 , then Q ∈ BA(G,F ), and for each a ∈ A we have

a.Q = a.Q1 − a.Q2 = a.Q1 − Q1.a + Q1.a − a.Q2 + Q2.a − Q2.a

= Da + Q1.a − Da − Q2.a = Q.a. (2.10)
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Now, we should show that Q ∈ ABA(G,F ). By (2.10), for each a ∈ A and

x ∈ G we have

〈x, a.Q〉 = 〈x,Q.a〉 = 〈a.x,Q〉.

Thus Q ∈ ABA(G,F ), and this means
∑

splits strongly.

Let A be a Banach algebra, and A∗∗ be the second dual space of A . There

are two products on A∗∗ ; these products are denoted by 2 and ¦ , and are called

the first and second Arens products (for more details see [5]).

Now, similar to amenable Banach algebras, we can prove the following Theorem

for module amenability of Banach algebras:

Theorem 2.4. Let A be a commutative Banach A-bimodule, and let I be a two-

sided closed ideal in A , which is a commutative Banach A-bimodule. If A is

module amenable, then the following statements are equivalent:

(i) I has a bounded approximate identity;

(ii) I is weakly complemented;

(iii) I is module amenable.

Proof. (i)⇒(iii). Let X be a I -essential module. By lemma 2.1 of [1], it suffices to

show that H1
A
(A,X ∗) = {0} . Let D : I −→ X ∗ be a bounded module derivation.

By (2.7) and (2.8), X is a unital Banach I -bimodule, and by Theorem 2.1, there

is a unique module derivation D̃ : M(I) −→ X ∗ such that D̃|I = D . Then

there is a regular continuous homomorphism θ : A −→ I , and since A is module

amenable, hence θ(A) also is module amenable (Proposition 2.5 of [1]). Therefore

D̃|θ(A) is inner. Thus D is an inner module derivation.

(iii)⇒(i). It is clear by Proposition 2.2 of [1].

(ii)⇒(i). Let I be a two-sided closed ideal in A , then

∑
: 0 −→ I

ı
−→ A

π
−→ A/I −→ 0

is a short exact sequence of commutative Banach A -A-bimodules. Then dual

sequence ∑
∗ : 0 −→ (A/I)∗

π∗

−→ A
ı∗

−→ I∗ −→ 0

is a short exact sequence of commutative Banach A -A-bimodules. Therefore
∑∗

is admissible (Theorem 2.8.31 of [4]), and since A is module amenable, then by
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Proposition 2.2,
∑∗

splits strongly. Thus there exists Q ∈ ABA(I∗,A∗) such

that ı∗ ◦Q = idI∗ . Also, since A is module amenable, then A has a left bounded

approximate identity (Proposition 2.2 of [1]), and by Proposition 2.9.16 of [4],

(A∗∗, ¦) has a left identity (¦ is the second Arens product on A∗∗ ). Let e be the

left identity of (A∗∗, ¦). Then

〈a, λ〉 = 〈e.a,Qλ〉 = 〈e, a.Qλ〉 = 〈e,Q(a.λ)〉

= 〈Q∗e, a.λ〉 = 〈Q∗e.a, λ〉 (a ∈ I, λ ∈ I∗).

Then a = Q∗e , and this mean Q∗e is a left identity for (I∗∗, ¦). Hence I has

a left bounded approximate identity (Proposition 2.9.16 of [4]). For right case,

work is similar, therefore proof is complete.

(i)⇒(ii). It is clear by Theorem 2.9.58 of [4].

A semigroup S is an inverse semigroup if for each s ∈ S there exists unique

s∗ ∈ S with ss∗s = s , s∗ss∗ = s∗ . A convenient introduction to inverse semi-

groups may be found in [6]. The mapping s 7→ s∗ is an involution on S , i.e.

s∗∗ = s and (st)∗ = t∗s∗ for all s, t ∈ S (see [11]).

We denote by ES the set of idempotents in S . Each idempotent of S is self-

adjoint, and ES is a commutative idempotent subsemigroup of S ; in particular

ES is a semilattice. Now we are ready to give a new proof of Corollary 1.22 of [10]:

Theorem 2.5. Let S be an amenable inverse semigroup, and let I be a two-sided

ideal in S . Then I is amenable.

Proof. Let S be inverse semigroup with the set of idempotents ES . Consider

`1(S) as a Banach module over `1(ES) with the multiplication right action and

the trivial left action. Then `1(S) is module amenable if and only if S is amenable

(Theorem 3.1 of [1]). `1(I) is complemented in `1(S) as a Banach space, and is

a commutative Banach `1(ES)-bimodule with the multiplication right action and

the trivial left action. Then by Theorem 2.3, `1(I) is module amenable. Thus, by

Theorem 3.1 of [1], I is amenable.

3 Constant of Module Amenability

Let A⊗̂AA be the projective module tensor product of A and A . This is the

quotient of the usual projective tensor product A⊗̂A by the closed ideal I gener-

ated by elements of the form α.a⊗ b− a⊗ b.α for α ∈ A , and a, b ∈ A . We have
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(A⊗̂AA)∗ ∼= LA(A,A∗), where the right hand side is the space of all A -module

morphisms from A into A∗ [12]. In particular A⊗̂AA is a Banach A -A-bimodule.

Consider ω ∈ L(A⊗̂A,A) defined by ω(a⊗b) = ab for each a, b ∈ A , and extended

by linearity. Then both ω and its second conjugate ω∗∗ ∈ L((A⊗̂A)∗∗,A∗∗) are

A-module homomorphisms. Let J be the closed ideal of A generated by ω(I).

We define ω̃ : A⊗̂AA = A⊗̂A/I −→ A/J by

ω̃(a ⊗ b + I) = ab + J (a, b ∈ A).

The notion of C -amenability comes from [7] and the amenability constant

AM(A) was specifically introduced in [9]. The Banach algebra A is called C -

amenable if has a bounded approximate diagonal (uα) such that supα ‖uα‖π ≤

C (‖.‖π is the projection norm). AM(A) is the minimum of the appropriate

constants C , and AM(A) ≥ 1. Accordingly to definition of C -amenability, we

define C -module amenability of Banach algebras.

A bounded net (ũα) in A⊗̂AA is called a module approximate diagonal if

ω̃(ũα) is a bounded approximate identity of A/J and

lim
α

‖ũα.a − a.ũα‖ = 0 (a ∈ A).

Then we say A is C -module amenable if A has a module approximate diago-

nal (uα) such that supα ‖uα‖ω̃ ≤ C . Now we can consider the following Theorems.

Theorem 3.1. Let A be module amenable Banach algebra with an identity eA ,

and A/J has a bounded approximate identity. Then the following statements hold:

(i) AM(A) ≥ ‖eA‖A ;

(ii) Let I be a two-sided closed with an identity eI . Then I is module amenable

with AM(I) ≤ ‖eI‖AM(A) .

Proof. (i) is clear. For (ii), by Theorem 2.4 module amenability of A implies

module amenability of I . Since A is module amenable, then A has a bounded

module approximate diagonal (Theorem 2.1 of [1]). Let (uα) be a bounded ap-

proximate diagonal for A in A⊗̂AA with supα ‖uα‖ ≤ AM(A). For each α , set

vα = eI .uα.eI ∈ I⊗̂AI . Where I⊗̂AI is the projective module tensor product

of I and I . This is the quotient of the usual projective tensor product I⊗̂I by

closed ideal T generated by elements of the form β.a⊗ b− a⊗ b.β for β ∈ A and
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a, b ∈ I . Similarly to A , consider ωI ∈ L(I⊗̂I, I). Let T be the closed ideal of I

generated by ω(T ). Define ω̃I : I⊗̂AI = I⊗̂I/T −→ I/T by

ω̃I(a ⊗ b + T ) = ab + T (a, b ∈ I).

Then we have

ω̃I(vα) = ω̃I(eI .uα.eI) −→ eI + T , (3.1)

and

lim
α

‖a.vα − vα.a‖ = lim
α

‖a.eI .uα.eI − eI .uα.eI .a‖

≤ lim
α

‖eI‖
2‖a.uα − uα.a‖ = 0. (3.2)

Also, we have

lim
α

‖vα − eI .uα‖ = lim
α

‖eI .uα.eI − eI .uα‖

≤ lim
α

‖eI‖‖uα.eI − eI .uα‖ = 0. (3.3)

Thus lim supα ‖vα‖ ≤ ‖eI‖AM(A). By (2.11), (2.12), (2.13), and Theorem 2.1

of [1], proof is complete.

Proposition 3.2. Let A and B be Banach A-bimodules with compatible actions,

and let A be C -module amenable. If there exists a continuous module homomor-

phism ϕ : A −→ B with dense range. Then B is ‖ϕ‖2C -module amenable.

Proof. Module amenability of A implies module amenability of B (Proposition 2.5

of [1]). Since ϕ : A −→ B is a continuous Banach algebra homomorphism, then

there exists a continuous module homomorphism ϕ ⊗A ϕ : A⊗̂AA −→ B⊗̂AB .

Suppose that (uα) is a module approximate diagonal for A such that supα ‖uα‖ ≤

C . Set (Uα) = (ϕ ⊗A ϕ)(uα). Then (Uα) is a module approximate diagonal for

B and ‖Uα‖ ≤ ‖ϕ‖2C .
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