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Abstract: Pythagoras’ theorem, Euclid’s formula for the area of a triangle as one

half the base times the height, and Heron’s or Archimedes’ formula are amongst

the most important and useful results of ancient Greek geometry. Here we look at

all three in a new and improved light, replacing distance with quadrance, and angle

with spread. As an application of this simpler and more elegant rational trigonom-

etry, we show how the famous surveying problem of Snellius and Pothenot, also

called resection, can be simplified by a purely algebraic approach.
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Three ancient Greek theorems

There are three classical theorems about triangles that every student meets, or

at least ought to meet. Here are the usual formulations, in terms of a triangle

A1A2A3 with side lengths d1 ≡ |A2, A3| , d2 ≡ |A1, A3| and d3 ≡ |A1, A2| .
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Pythagoras’ theorem The triangle A1A2A3 has a right angle at A3 precisely

when

d2

1
+ d2

2
= d3

3
.

Euclid’s theorem The area of a triangle is one half the base times the height.

Heron’s theorem If s ≡ (d1 + d2 + d3) /2 is the semi-perimeter of the triangle,

then

area =
√

s (s − d1) (s − d2) (s − d3).

In this paper we will recast all three in simpler and more general forms by

removing unnecessary irrationalities. As a reward, we find that rational trigonom-

etry falls into our laps, essentially for free. Our reformulation extends to a general

field (not of characteristic two), to higher dimensions, and even with an arbitrary

quadratic form, as in [3] and [4]. We then apply these ideas to give a completely

algebraic solution to probably the most famous classical problem in surveying: the

resection problem of Snellius and Pothenot (see for example [1]).

Pythagoras’ theorem

Euclid and other ancient Greeks rightly regarded area, not distance, as the funda-

mental quantity in planar geometry. They worked with a straightedge and compass

in their constructions, not a ruler, and a line segment was measured by the area of

a square on it. Two line segments were considered equal if they were congruent,

but this was independent of a direct notion of distance measurement.

Pythagoras’ theorem, as it appears in Propositions 47 and 48 of Book 1 of

Euclid’s Elements, states that the area of the square on one side of a triangle is the

sum of the areas of the squares on the other two sides precisely when the triangle

is a right triangle. This formulation in terms of areas as opposed to lengths is

often neglected today, but with a sheet of graph paper it is still an attractive way

to introduce students to the subject, as the area of many simple figures can be

computed by subdividing and translating, while lengths are generally impossible

to compute correctly.

The squares on the sides of triangle A1A2A3 shown in Figure 1 have areas 5, 20

and 25. The largest square, for example, can be seen as four triangles which can be

rearranged to get two rectangles each of sides 3× 4, together with a 1× 1 square,

for a total area of 25. So Pythagoras’ theorem can be established by counting, and
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Figure 1: Pythagoras’ theorem using areas

the use of irrational numbers to describe lengths is unnecessary for a triangle with

rational coordinates.

Following the Greek terminology of ‘quadrature’, we will use the word quad-

rance and the symbol Q to denote the area of a square constructed on a line

segment. In coordinates, if A1 ≡ [x1, y1] and A2 ≡ [x2, y2] , then the quadrance

between A1 and A2 is

Q (A1, A2) ≡ (x2 − x1)
2

+ (y2 − y1)
2
.

So for example the quadrance between the points [0, 0] and [1, 2] is Q = 5. The

usual distance is the square root of the quadrance, and requires a prior theory of

irrational numbers. Clearly the irrational number
√

5 ≈ 2. 236 067 977 . . . is a far

more sophisticated and complicated object than the natural number 5.

In statistics, variance is more natural than standard deviation. In quantum

mechanics, wavefunctions are more basic than probability amplitudes. In har-

monic analysis, L2 is more pleasant than L1. In geometry, quadrance is more

fundamental than distance.

For a triangle A1A2A3 we define the quadrances Q1 ≡ Q (A2, A3), Q2 ≡
Q (A1, A3) and Q3 ≡ Q (A1, A2). Here then is Pythagoras’ theorem as the Greeks

viewed it :

Theorem 1 (Pythagoras). The lines A1A3 and A2A3 of the triangle A1A2A3

are perpendicular precisely when

Q1 + Q2 = Q3.
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With this formulation, the theorem extends to arbitrary fields, higher dimen-

sions, and to more general quadratic forms, such as the Minkowski form of special

relativity (see [6]). Furthermore, a relatively simple deformation gives Pythagoras’

theorem in both hyperbolic and elliptic geometries (see [7], [8]).

Euclid’s theorem

Let’s now see how we might remove some of the irrationalities inherent in Euclid’s

theorem. The area of the triangle A1A2A3 in Figure 2 is one half of the area of

A

A

F

1

2

A

A

3

4

Figure 2: A triangle and an associated parallelogram

the associated parallelogram A1A2A3A4. The latter area may be calculated by

removing from the outer 12 × 8 rectangle four triangles, which can be combined

to form two rectangles, one 5 × 3 and the other 7 × 5. The area of A1A2A3 is

thus (96 − 15 − 35)/2 = 23.

To apply the one-half base times height rule, the base A1A2 by Pythagoras

has length

d3 = |A1, A2| =
√

72 + 52 =
√

74 ≈ 8. 602 325 267 04 . . . .

To find the length h of the altitude A3F , set the origin to be at A1, then the line

A1A2 has Cartesian equation 5x− 7y = 0 while A3 = [2, 8] . A well-known result

from coordinate geometry then states that the distance h = |A3, F | from A3 to

the line A1A2 is

h =
|5 × 2 − 7 × 8|√

52 + 72
=

46√
74

≈ 5. 347 391 382 22 . . . .

If an engineer doing this calculation works with the surd forms of both expressions,

she will notice that the two occurrences of
√

74 conveniently cancel when she takes
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one half the product of d3 and h , giving an area of 23. However if she works

immediately with the decimal forms, she may be surprised that her calculator

gives

area ≈ 8. 602 325 267 04 . . . × 5. 347 391 382 22 . . .

2
≈ 23. 000 000 000 01.

The usual formula forces us to descend to the level of irrational numbers and square

roots, even when the eventual answer is a natural number, and this introduces

unnecessary approximations and inaccuracies into the subject. It is not hard to

see how the use of quadrance allows us to reformulate the result.

Theorem 2 (Euclid). The square of the area of a triangle is one-quarter the

quadrance of the base times the quadrance of the corresponding altitude.

As a formula, this would be

(area)
2

=
Q × H

4

where Q is the quadrance of the base and H is the quadrance of the altitude to

that base.

Heron’s or Archimedes’ Theorem

The same triangle A1A2A3 of the previous section has side lengths

d1 =
√

34 d2 =
√

68 d3 =
√

74.

The semi-perimeter s, defined to be one half of the sum of the side lengths, is then

s =

√
34 +

√
68 +

√
74

2
≈ 11. 339 744 206 6 . . . .

Using the usual Heron’s formula, a computation with the calculator shows that

area =

√

s
(

s −
√

34
)(

s −
√

68
)(

s −
√

74
)

≈ 23. 000 000 000 4.

Again we have a formula involving square roots in which there appears to be a sur-

prising integral outcome. Let’s now give a new and improved form of Heron’s the-

orem, with also a more appropriate name. Arab sources suggest that Archimedes

knew Heron’s formula earlier, and the greatest mathematician of all time deserves

credit for more than he currently gets.
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Theorem 3 (Archimedes). The area of a triangle A1A2A3 with quadrances

Q1, Q2 and Q3 is determined by the formula

16 × (area)
2

= (Q1 + Q2 + Q3)
2 − 2

(

Q2

1
+ Q2

2
+ Q2

3

)

.

In our example the triangle has quadrances 34, 68 and 74, each obtained by

Pythagoras’ theorem. So Archimedes’ theorem states that

16 × (area)
2

= (34 + 68 + 74)
2 − 2

(

342 + 682 + 742
)

= 8464

and this gives an area of 23. In rational trigonometry, the quantity

A ≡ (Q1 + Q2 + Q3)
2 − 2

(

Q2

1
+ Q2

2
+ Q2

3

)

is called the quadrea of the triangle, and turns out to be the single most important

number associated to a triangle. Note that

A = 4Q1Q2 − (Q1 + Q2 − Q3)
2

=

∣

∣

∣

∣

∣

2Q1 Q1 + Q2 − Q3

Q1 + Q2 − Q3 2Q2

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 Q1 Q2 1

Q1 0 Q3 1

Q2 Q3 0 1

1 1 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It is instructive to see how to go from Heron’s formula to Archimedes’ theorem.

In terms of the side lengths d1, d2 and d3 :

16 × (area)
2

= (d1 + d2 + d3) (−d1 + d2 + d3) (d1 − d2 + d3) (d1 + d2 − d3)

=
(

(d1 + d2)
2 − d2

3

) (

d2

3
− (d1 − d2)

2
)

=
(

(d1 + d2)
2

+ (d1 − d2)
2
)

Q3 − (d1 + d2)
2
(d1 − d2)

2 − Q2

3

= 2 (Q1 + Q2) Q3 −
(

d2

1
− d2

2

)2 − Q2

3

= 2 (Q1 + Q2) Q3 − (Q1 − Q2)
2 − Q2

3

= (Q1 + Q2 + Q3)
2 − 2

(

Q2

1
+ Q2

2
+ Q2

3

)

.

Archimedes’ theorem implies another theorem of very considerable importance.

Theorem 4 (Triple quad formula). The three points A1, A2 and A3 are

collinear precisely when

(Q1 + Q2 + Q3)
2

= 2
(

Q2

1
+ Q2

2
+ Q2

3

)

.
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The proof is immediate, as collinearity is equivalent to the area of the triangle

being zero. The function

A (Q1, Q2, Q3) = (Q1 + Q2 + Q3)
2 − 2

(

Q2

1
+ Q2

2
+ Q2

3

)

will be called Archimedes’ function.

Spread between lines

A numerical angle (as opposed to the geometrical configuration made by two in-

tersecting lines), is the ratio of a circular distance to a linear distance, and this is

a complicated concept, as Euclid well realized. This is why angle measurements

play essentially no role in the Elements, apart from right angles.

To define an angle properly you need calculus, an important point essentially

understood by Archimedes. Vagueness about angles, and the accompanying am-

biguities in the definitions of the circular functions cos θ, sin θ and tan θ , weaken

the logical coherence of most modern calculus texts.

So there is a reason why classical trigonometry is almost always painful to most

students—the subject is based on the wrong notions ! As a result, mathematics

teachers continually rely on 90− 45− 45 and 90− 60− 30 triangles for examples

and test questions, which makes the subject very narrow and repetitive.

Rational trigonometry, developed in [3], see also [6], shows how to enrich and

simplify the subject at the same time, leading to greater accuracy and quicker

computations. In what follows, we show how the basic ideas follow naturally from

our presentation of the theorems of Pythagoras, Euclid and Archimedes.

A

s

B

C

l

l

1

2

QR

Figure 3: Spread s between two lines l1 and l2
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The separation between lines l1 and l2 is captured by the concept of spread,

which may be defined as the ratio of two quadrances as follows. Suppose l1 and

l2 intersect at the point A, as in Figure 3. Choose a point B 6= A on one of the

lines, say l1, and let C be the foot of the perpendicular from B to l2 . Then the

spread s between l1 and l2 is

s = s (l1, l2) ≡
Q (B,C)

Q (A,B)
=

Q

R
.

This ratio is independent of the choice of B, by a theorem that goes back to

Thales, and is defined between lines, not rays.

The spread protractor in Figure 4 was created by M. Ossmann and is available

online at [2].

Figure 4: A spread protractor

When lines are expressed in Cartesian form, the spread becomes a rational

expression in the coefficients of the lines. If the lines l1 and l2 have direction

vectors v1 ≡ (a1, b1) and v2 ≡ (a2, b2) then a linear algebra calculation (highly

recommended!) shows that

s (l1, l2) =
(a1b2 − a2b1)

2

(a2

1
+ b2

1
) (a2

2
+ b2

2
)
.

Parallel lines are defined to have spread s = 0, while perpendicular lines have

spread s = 1. You may check that the spread corresponding to 30◦ or 150◦ is

s = 1/4, while the spread corresponding to 60◦ or 120◦ is 3/4. In the triangle

ABC above, the spread at the vertex A and the spread at the vertex B sum to

1, on account of Pythagoras’ theorem.
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Rational trigonometry

Let’s see how to combine the three ancient Greek theorems above to derive the

main laws of trigonometry in this rational form, without any need for transcenden-

tal functions. Our general notation will be: a triangle A1A2A3 has quadrances

Q1, Q2 and Q3, as well as corresponding spreads s1, s2 and s3, labelled as in

Figure 5.

A1

A3

A2s1

Q1

Q3

Q2
s3

s2

Figure 5: Quadrances and spreads of a triangle

If H3 is the quadrance of the altitude from A3 to the line A1A2, then Euclid’s

theorem and the definition of spread give

(area)
2

=
Q3 × H3

4
=

Q3Q2s1

4
=

Q3Q1s2

4
.

By symmetry, we deduce the following analog of the Sine law.

Theorem 5 (Spread law). For a triangle with quadrances Q1, Q2 and Q3, and

spreads s1, s2 and s3,

s1

Q1

=
s2

Q2

=
s3

Q3

=
4 × (area)

2

Q1Q2Q3

.

By equating the formulas for 16 × (area)
2

given by Euclid’s and Archimedes’

theorems, we get

4Q1Q2s3 = (Q1 + Q2 + Q3)
2 − 2

(

Q2

1
+ Q2

2
+ Q2

3

)

= 4Q1Q2 − (Q1 + Q2 − Q3)
2
.

This gives the following analog of the Cosine law.

Theorem 6 (Cross law). For a triangle with quadrances Q1, Q2 and Q3, and

spreads s1, s2 and s3,

(Q1 + Q2 − Q3)
2

= 4Q1Q2 (1 − s3) .
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Now set

D ≡ Q1Q2Q3

4 × (area)
2

and substitute Q1 = s1D, Q2 = s2D and Q3 = s3D from the Spread law into

the Cross law, and cancel the common factor of D2 . The result is the relation

(s1 + s2 − s3)
2

= 4s1s2 (1 − s3)

between the three spreads of a triangle, which can be rewritten more symmetrically

as follows.

Theorem 7 (Triple spread formula). The three spreads s1, s2 and s3 of a

triangle satisfy

(s1 + s2 + s3)
2

= 2
(

s2

1
+ s2

2
+ s2

3

)

+ 4s1s2s3.

This formula is a deformation of the Triple quad formula by a single cubic

term, and is the analog in rational trigonometry to the classical fact that the three

angles of a triangle sum to (approximately) 3. 141 592 653 59 . . . .

The Triple quad formula, Pythagoras’ theorem, the Spread law, the Cross law

and the Triple spread formula are the five main laws of rational trigonometry.

We have just seen that these are closely connected with the geometrical work of

the ancient Greeks, and really only elementary high school algebra was needed in

addition.

As demonstrated at some length in [3], these formulas and a few additional

secondary ones suffice to solve the majority of trigonometric problems, usually

more simply, more accurately and more elegantly than the classical theory involv-

ing sin θ, cos θ , tan θ and their inverse functions. As shown in [4], [5] and [6], the

same formulas extend to geometry over general fields and with arbitrary quadratic

forms, and as shown recently in [7] and [8], the main laws of rational trigonometry

also in hyperbolic and elliptic geometry are closely related. Let’s show how to use

rational trigonometry to solve the most famous and important surveying problem.

Snellius-Pothenot problem

The problem of resection was originally stated and solved by Snellius (1617) and

then by Pothenot (1692). Despite being an interesting application of trigonometry,

many mathematics students outside of surveying never see it.
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Problem 8 (Snellius/Pothenot, or resection). The quadrances Q1, Q2 and

Q3 of the known triangle A1A2A3 are known. The spreads r1 ≡ s (BA2, BA3) ,

r2 ≡ s (BA1, BA3) and r3 ≡ s (BA1, BA2) are measured from point B . One

wants to find the position of B relative to the triangle A1A2A3 , in other words to

find P1 ≡ Q (B,A1) , P2 ≡ Q (B,A2) and P3 ≡ Q (B,A3) (see Figure 6).

A1

A2

A3

Q1

Q2

Q3

P

P

P1

2

3

r
r

r
1

2

3

B

Figure 6: Q1, Q2, Q3 and r1, r2, r3 are known. What are P1, P2 and P3 ?

The solution presented here has some common features with traditional ones

using classical trigonometry, especially the use of Collins’ point and a particular

circle, but algebraically it is quite different, demonstrating techniques of rational

trigonometry. Let’s see how to determine P1 and P2 . Take the circumcircle c3

of A1A2B and let H , called Collin’s point, be the other intersection of c3 with

A3B , as shown in Figure 7.

A

A

B

H

1

2

A3

P

P

Q

Q

1

2

2

3
Q1R

R

1

2

r

r
r

r

r
1

1

2

2

3

v
v
1

2

r3

c3

Figure 7: Solution to the resection problem of Snellius and Pothenot

Define the quadrances R1 ≡ Q (H,A1), R2 ≡ Q (H,A2) and R3 ≡ Q (H,A3) .
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It is then a fact that any two spreads subtended by a chord of a circle are

equal (as opposed to the situation with angles, where one needs to worry about

the relative positions of the points and the chord). It follows that the spreads

s (A1H,A1A2), s (A2H,A2A1) and s (HA1,HA2) are respectively r1, r2 and r3.

Let v1 ≡ s (HA1,HA3) and v2 ≡ s (HA2,HA3). The Spread law in A1A2H

allows us to write

R1 = r2Q3/r3 and R2 = r1Q3/r3. (1)

The four point relation, which goes back to Tartaglia and was also found by

Euler, describes the relation between six quadrances formed by a triangle such as

A1A2A3 and an additional point such as H . It is
∣

∣

∣

∣

∣

∣

∣

2R1 R1 + R2 − Q3 R1 + R3 − Q2

R1 + R2 − Q3 2R2 R2 + R3 − Q1

R1 + R3 − Q2 R2 + R3 − Q1 2R3

∣

∣

∣

∣

∣

∣

∣

= 0. (2)

In fact the left hand side is the square of the volume of the tetrahedron with edge

quadrances Q1, Q2, Q3 and R1, R2 and R3, divided by 288. When working with

volumes of polytopes, formulas often involve quadrances.

One can rewrite (2) as the following quadratic equation in R3 :

(

R3 − R1 − R2 + Q3 − Q1 − Q2 +
(Q1 − Q2) (R2 − R1)

Q3

)2

=
A (Q1, Q2, Q3) A (R1, R2, Q3)

4Q2

3

where A is Archimedes’ function. After substituting for the values of R1 and R2

from (1) and simplifying, you get the equation

(R3 − C)
2

= D

where

C =
(Q1 + Q2 + Q3) (r1 + r2 + r3) − 2 (Q1r1 + Q2r2 + Q3r3)

2r3

and

D =
r1r2 A (Q1, Q2, Q3)

r3

.

There are two possible solutions R3, and for each the Cross law in A1A3H gives

v1 = 1 − (R1 + R3 − Q2)
2

4R1R3
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while the Cross law in A2A3H gives

v2 = 1 − (R2 + R3 − Q1)
2

4R2R3

.

Then the Spread laws in A1BH and A2BH give the required values

P1 =
v1R1

r2

=
v1Q3

r3

P2 =
v2R2

r1

=
v2Q3

r3

.

In [3], from which this derivation is taken, there is an example of the calculations

worked out in a particular case, and also the related Hansen’s problem is discussed,

along with other more elementary surveying problems.

Conclusion

In retrospect, the blind spot first occurred with the Pythagoreans, who initially

believed that all of nature should be expressible in terms of natural numbers and

their proportions. When they discovered that the ratio of the length of a diagonal

to the length of a side of a square was the incommensurable proportion
√

2 : 1,

they panicked, and according to legend threw the exposer of the secret overboard

while at sea.

Had they maintained their beliefs in the workings of the Divine Mind, and

concluded that the squares of the lengths are the crucial quantities in geometry,

then mathematics might have had a significantly different history, the geometry

underlying Einstein’s special theory of relativity might have been discovered ear-

lier, algebraic geometry would have quite another aspect, and students would be

studying a much simpler and more elegant trigonometry.

References

[1] H. Dorrie, 100 Great Problems of Elementary Mathematics: Their history and

solution, translated by D. Antin, Dove, New York, 1965.

[2] M. Ossmann, ‘Print a Protractor’, download online at

http://www.ossmann.com/protractor/.



14 Chamchuri J. Math. 2(2010), no. 2: N. Wildberger

[3] N.J. Wildberger, Divine Proportions: Rational Trigonometry to Universal

Geometry, Wild Egg Books, Sydney, 2005.

[4] N.J. Wildberger, One dimensional metrical geometry, Geometriae Dedicata,

128(1)(2007), 145–166.

[5] N.J. Wildberger, Chromogeometry, Mathematical Intelligencer, 32(1)(2010),

26–32.

[6] N.J. Wildberger, Affine and Projective Universal Geometry, to appear, J. of

Geometry, http://arxiv.org/abs/math/0612499v1.

[7] N.J. Wildberger, Universal Hyperbolic Geometry I: Trigonometry,

http://arxiv.org/abs/0909.1377v1.

[8] N.J. Wildberger, Universal Hyperbolic Geometry II: A pictorial overview,

KoG, 14(2010), 3–23.

Norman J. Wildberger

School of Mathematics and Statistics, UNSW

Sydney 2052, Australia

Email: n.wildberger@unsw.edu.au


